MEROMORPHIC STARLIKE FUNCTIONS

PAUL J. EENIGENBURG[†] and ALBERT E. LIVINGSTON

ABSTRACT. Let $\Lambda^*(p)$ the class of functions f(z) univalent and meromorphic in $\Delta = \{z \mid |z| < 1\}$ with simple pole at z = p, 0 < p< 1, f(0) = 1 and which map Δ onto a domain whose complement is starlike with respect to the origin. We discuss the coefficients of the Taylor series $f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n$, |z| < p and the Laurent series $f(z) = \sum_{n=-\infty}^{\infty} b_n z^n$, p < |z| < 1. We also obtain best possible order estimates on L(r), the length of the image of $\{z: |z| = r\}$ for a function in $\Lambda^*(p)$. Estimates on the integral means of higher order derivatives are also obtained and in the last section a question of Holland [5] is answered.

1. Introduction. Let $\Sigma(p)$ denote the class of functions f(z) which are meromorphic and univalent in $\Delta = \{z | |z| < 1\}$ with a simple pole at z = p, 0 , and with <math>f(0) = 1. If, further, there exists $\delta, p < \delta < 1$, such that

(1.1)
$$\operatorname{Re}\frac{zf'(z)}{f(z)} < 0$$

and

(1.2)
$$\frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \frac{zf'(z)}{f(z)} d\theta = -1$$

for $\delta < |z| < 1$ with $z = re^{i\theta}$, we say that f(z) is in $\Lambda(p)$. Functions in $\Lambda(p)$, which have been discussed in [10, 11], map Δ onto a domain whose complement is starlike with respect to the origin. However, there exist functions with pole at p having this mapping property which do not satisfy (1.1) if p > 1/2. The function

$$F(z) = \frac{-p(1+z)^2}{(z-p)(1-pz)}$$

maps Δ onto the complement of the interval $[-4p/(1-p)^2, 0]$ but does not satisfy (1.1) if p > 1/2 [10].

Let $\Lambda^*(p)$ denote the class of functions f(z) which have the representation

[†]The research of the first author was supported by a Western Michigan University Research Fellowship.

Received by the editors on June 21, 1979, and in revised form on January 11, 1980.

Copyright © 1981 Rocky Mountain Mathematics Consortium