MODULAR FACE LATTICES: LOW DIMENSIONAL CASES

GEORGE PHILLIP BARKER

Abstract

Let K be a self dual cone with a modular lattice of faces. If $\operatorname{dim} K=4$, then K is strictly convex. If $\operatorname{dim} K=5$, then either K is strictly convex or every maximal face is of dimension 3. An example is given of a self dual cone K which has an orthomodular but not modular lattice of faces.

The notations and conventions are those of [2] and [3]. Recall that cone K in a real vector space V is a subset such that if $x, y \in K, \alpha, \beta \geqq 0$, then $\alpha x+\beta y \in K$. The cones considered here will be topologically closed, pointed ($K \cap(-K)=\{0\}$), and full (non-empty interior). Also V is assumed to be finite dimensional. K defines an order in V by $x \geqq 0$ if and only if $x \in K$ (cf. [1]). We shall write: $x \geqq y$ if $x-y \in K ; x>y$ if $x \geqq y$ and $x \neq y$; and $x \gg y$ if $x-y \in$ int K. A subset F of K is a face if and only if $0 \leqq x \leqq y$ and $y \in F$ implies $x \in F$. Let $\mathscr{F}(K)$ denote the set of all faces of K, and if $S \subset K$, put $\varphi(S)=\bigcap\{F: F \in \mathscr{F}(K)$ and $F \supset S\}$. Then $\mathscr{F}(K)$, ordered by inclusion, becomes a lattice if we define $F \vee G=$ $\varphi(F \cup G), F, G \in \mathscr{F}(K)$, and $F \wedge G=F \cap G$.

If $p \in K$ and $\varphi(p)$ is a ray, we call p an extremal and let Ext K denote the set of all extremals. If $F \in \mathscr{F}(K)$, we shall also write $F \triangleleft K$. More generally, since any face is full in its span, we may write $F \triangleleft G$ if F, G are faces of K and $F \cong G$ (cf. [2]). Let $\langle F\rangle=F-F$ denote the linear span of F. We set $\operatorname{dim} F=\operatorname{dim}\langle F\rangle$. If $\mathscr{F}(K)$ is modular, then any two maximal chains linking $\{0\}$ and a face F will have the same number of elements. If there are $k+1$ elements in a maximal chain between $\{0\}$ and F, we call k the height of F and write $h(F)=k$. (In the lattice theory this number is often called the dimension, but we wish to use the latter term for the algebraic dimension.) Note that if $F \in \mathscr{F}(K)$, then $h(F) \leqq \operatorname{dim} F$, and in general equality holds only when F is an atom or K is simplicial. If $h(K)=2$, then either K is strictly convex or a two dimensional simplicial cone. More generally as theorem 2 of [3] and the following lemma show, it is enough to consider only indecomposable cones K. Recall that a cone K is decomposable (cf. [6]) if there are proper subsets $K_{1}, K_{2} \subset K$ such that
(1) $\forall x \in K, \exists x_{i} \in K_{i}$ such that $x=x_{1}+x_{2}$,
(2) span $K_{1} \cap \operatorname{span} K_{2}=\{0\}$

