MODULAR FACE LATTICES: LOW DIMENSIONAL CASES

GEORGE PHILLIP BARKER

ABSTRACT. Let K be a self dual cone with a modular lattice of faces. If dim K = 4, then K is strictly convex. If dim K = 5, then either K is strictly convex or every maximal face is of dimension 3. An example is given of a self dual cone K which has an orthomodular but not modular lattice of faces.

The notations and conventions are those of [2] and [3]. Recall that cone K in a real vector space V is a subset such that if $x, y \in K, \alpha, \beta \ge 0$, then $\alpha x + \beta y \in K$. The cones considered here will be topologically closed, pointed $(K \cap (-K) = \{0\})$, and full (non-empty interior). Also V is assumed to be finite dimensional. K defines an order in V by $x \ge 0$ if and only if $x \in K$ (cf. [1]). We shall write: $x \ge y$ if $x - y \in K$; x > y if $x \ge y$ and $x \ne y$; and $x \gg y$ if $x - y \in$ int K. A subset F of K is a *face* if and only if $0 \le x \le y$ and $y \in F$ implies $x \in F$. Let $\mathscr{F}(K)$ denote the set of all faces of K, and if $S \subset K$, put $\varphi(S) = \bigcap \{F: F \in \mathscr{F}(K) \text{ and } F \supset S\}$. Then $\mathscr{F}(K)$, ordered by inclusion, becomes a lattice if we define $F \lor G = \varphi(F \cup G), F, G \in \mathscr{F}(K), \text{ and } F \land G = F \cap G$.

If $p \in K$ and $\varphi(p)$ is a ray, we call p an *extremal* and let Ext K denote the set of all extremals. If $F \in \mathscr{F}(K)$, we shall also write $F \triangleleft K$. More generally, since any face is full in its span, we may write $F \triangleleft G$ if F, G are faces of K and $F \subseteq G$ (cf. [2]). Let $\langle F \rangle = F - F$ denote the linear span of F. We set dim $F = \dim \langle F \rangle$. If $\mathscr{F}(K)$ is modular, then any two maximal chains linking $\{0\}$ and a face F will have the same number of elements. If there are k + 1 elements in a maximal chain between $\{0\}$ and F, we call k the height of F and write h(F) = k. (In the lattice theory this number is often called the dimension, but we wish to use the latter term for the algebraic dimension.) Note that if $F \in \mathscr{F}(K)$, then $h(F) \leq \dim F$, and in general equality holds only when F is an atom or K is simplicial. If h(K) = 2, then either K is strictly convex or a two dimensional simplicial cone. More generally as theorem 2 of [3] and the following lemma show, it is enough to consider only indecomposable cones K. Recall that a cone K is decomposable (cf. [6]) if there are proper subsets $K_1, K_2 \subset K$ such that

(1) $\forall x \in K, \exists x_i \in K_i \text{ such that } x = x_1 + x_2,$

(2) span $K_1 \cap \text{span } K_2 = \{0\}$

Received by the editors on October 26, 1979.

Copyright © 1981 Rocky Mountain Mathematics Consortium