WILDNESS AND FLATNESS OF CODIMENSION ONE SPHERES HAVING DOUBLE TANGENT BALLS

R.J. DAVERMAN* AND L.D. LOVELAND

Introduction. A round n-dimensional ball B_{p} is said to be tangent to an ($n-1$)-sphere Σ in E^{n} at a point $p \in \Sigma$ if $p \in B_{p}$ and $\Sigma \cap B_{p} \subset \mathrm{Bd} B_{p}$. If Int $B \subset$ Ext Σ, B_{p} is called an exterior tangent ball and if Int $B_{p} \subset$ Int Σ, B_{p} is an interior tangent ball. When Σ has both an interior and an exterior tangent ball at p, Σ is said to have a double tangent ball at p. If Σ has a certain class of tangent ball for each point of a subset K of Σ, then Σ is said to have this class of tangent balls over K. A uniform collection of round is one in which every ball has the same radius.

One suspects that the subject of double tangent balls first arose as a rigidly geometric potential analogue to smoothness; if an $(n-1)$-sphere Σ has double tangent balls at each point, then it would seem to be embedded with a geometrically nice kind of curvature. This would form a basis for a conjecture that, in this context, the double tangent balls property implies flatness. In response to a question by Bing [2] concerning this conjecture in 3-space, Bothe [3] and Loveland [17] independently proved that a 2 -sphere in E^{3} is flat if it has double tangent balls at each of its points. Griffith [15] had earlier produced an affirmative answer to Bing's question provided the collection of double tangent balls was known to be uniform. The situation when $n=3$ is best summarized by the following theorem, which, although not explicitly stated in [17], follows from the proof there. This generalization is also apparent from Cannon's subsequently developed *-taming set theory (see Corollary 6 of [8]).

Theorem A. If Σ is a 2 -sphere in E^{3} that is locally flat modulo a closed subset W of Σ and if Σ has double tangent balls over W, then Σ is flat.

The examples from §1 show the impossibility of such a theorem for a codimension one sphere in E^{n} with $n>3$; in fact, Theorem A does not generalize to $n>3$ even with the added hypothesis that Σ has uniform double tangent balls over W. These examples stand as circumstantial evidence of the still unauthenticated possibility that an $(n-1)$-sphere in $E^{n}(n<3)$ with double tangent balls everywhere may fail to be flat.

Nevertheless there are interesting facts about higher dimensional

[^0]
[^0]: *Research supported in part by NSF Grant MC576-07274.
 Received by the editors on January 16, 1979.

