GLOBAL PROPERTIES OF SPACES OF $A R$'s

LAURENCE BOXER

Abstract

We study the hyperspace (denoted $A R_{h}^{X}$) of compact absolute retract subsets of certain finite-dimensional compacta X. The topology of $A R_{h}^{X}$ is induced by Borsuk's homotopy metric. We show $A R_{h}^{X}$ is contractible if X is pseudoisotopically contractible. We show $A R_{b}^{X}$ is simply-connected if X is a sphere of dimension greater than 1.

1. Introduction. Let X be a finite-dimensional compactum and let 2_{h}^{X} be the space of nonempty compact ANR subsets of X introduced by Borsuk [2]. If d is a metric for X, the topology of 2_{h}^{X} is induced by the homotopy metric d_{h}, which may be described as follows: $d_{h}\left(A_{i}, A\right) \rightarrow 0$ if and only if
a) $d_{s}\left(A_{i}, A\right) \rightarrow 0$, where d_{s} is the well-known Hausdorff metric, and
b) for every $\varepsilon>0$ there is a $\delta>0$ such that every A_{i}-subset of diameter less than δ contracts to a point in an A_{i}-subset of diameter less than ε.

We let $A R_{h}^{X}$ be the subspace of 2_{h}^{X} consisting of the members of 2_{h}^{X} that are absolute retracts ($A R^{\prime}$ s). Since $A R_{h}^{X}$ is open and closed in 2_{h}^{X} ([2], p. 200), $A R_{h}^{X}$ is a union of components of 2_{h}^{X}.

Let I denote the interval $[0,1]$. We will use the following lemmas.
Lemma 1.1. ([1], 4.2, p. 43). If $A \in 2_{h}^{X}$ and $f: A \times I \rightarrow X$ is an isotopy, then the function $g: I \rightarrow 2_{h}^{X}$ defined by $g(t)=f_{t}(A)$ is continuous.

Lemma 1.2. ([4], 2.1). Let U be open in X. Then $\left\{A \in 2_{h}^{X} \mid A \subset U\right\}$ is open in 2_{h}^{X}.
2. We will denote by $s(A, \delta, \varepsilon)$ the words "every A-subset of diameter less than δ contracts to a point in an A-subset of diameter less than ε." We prove the following lemma.

Lemma 2.1. Let X and Y be finite-dimensional compacta with $X \subset Y$. Let $f: X \times I \rightarrow Y$ be an isotopy. Then the induced function $f_{*}: 2_{h}^{X} \times I \rightarrow 2_{h}^{Y}$ defined by $f_{*}(A, t)=f_{t}(A)$ is continuous.

[^0]
[^0]: AMS (MOS) 1970 subject classification: Primary 54B20, 54F40; Secondary 57A05, 57A10, 57A15.
 Key words and phrases: Finite-dimensional compactum, Hausdorff metric, homotopy metric.

 Received by the editors on July 26, 1977.

