GLOBAL PROPERTIES OF SPACES OF AR's

LAURENCE BOXER

ABSTRACT. We study the hyperspace (denoted AR_h^X) of compact absolute retract subsets of certain finite-dimensional compacta X. The topology of AR_h^X is induced by Borsuk's homotopy metric. We show AR_h^X is contractible if X is pseudoisotopically contractible. We show AR_h^X is simply-connected if X is a sphere of dimension greater than 1.

1. Introduction. Let X be a finite-dimensional compactum and let 2_h^X be the space of nonempty compact ANR subsets of X introduced by Borsuk [2]. If d is a metric for X, the topology of 2_h^X is induced by the homotopy metric d_h , which may be described as follows: $d_h(A_i, A) \to 0$ if and only if

a) $d_s(A_i, A) \rightarrow 0$, where d_s is the well-known Hausdorff metric, and

b) for every $\varepsilon > 0$ there is a $\delta > 0$ such that every A_i -subset of diameter less than δ contracts to a point in an A_i -subset of diameter less than ε .

We let AR_{h}^{X} be the subspace of 2_{h}^{X} consisting of the members of 2_{h}^{X} that are absolute retracts (AR's). Since AR_{h}^{X} is open and closed in 2_{h}^{X} ([2], p. 200), AR_{h}^{X} is a union of components of 2_{h}^{X} .

Let I denote the interval [0, 1]. We will use the following lemmas.

LEMMA 1.1. ([1], 4.2, p. 43). If $A \in 2_h^X$ and $f: A \times I \to X$ is an isotopy, then the function $g: I \to 2_h^X$ defined by $g(t) = f_t(A)$ is continuous.

LEMMA 1.2. ([4], 2.1). Let U be open in X. Then $\{A \in 2_h^X | A \subset U\}$ is open in 2_h^X .

2. We will denote by $s(A, \delta, \varepsilon)$ the words "every A-subset of diameter less than δ contracts to a point in an A-subset of diameter less than ε ." We prove the following lemma.

LEMMA 2.1. Let X and Y be finite-dimensional compacta with $X \subset Y$. Let $f: X \times I \to Y$ be an isotopy. Then the induced function $f_*: 2_h^X \times I \to 2_h^Y$ defined by $f_*(A, t) = f_i(A)$ is continuous.

AMS (MOS) 1970 subject classification: Primary 54B20, 54F40; Secondary 57A05, 57A10, 57A15.

Key words and phrases: Finite-dimensional compactum, Hausdorff metric, homotopy metric.

Received by the editors on July 26, 1977.

Copyright © 1980 Rocky Mountain Mathematics Consortium