SINGULAR NONLINEAR EVOLUTION EQUATIONS

R. E. SHOWALTER*

ABSTRACT. Sufficient conditions are given to obtain existence and uniqueness of strong solutions to $u'(t) + A(u(t)) \ni f(t)$ on $(-\infty, 0)$ where A is a maximal monotone operator in Hilbert space. Applications to certain nonlinear problems for partial differential equations are described.

1. Introduction. We shall consider nonlinear evolution equations of the form

$$(1.1) \qquad \frac{du(t)}{dt} + \mu u(t) + A(u(t)) \ni f(t), -\infty < t < 0,$$

in a Hilbert space H, where $\mu \in \mathbb{R}$, the real numbers, and A is a maximal monotone operator in H [2]. The solution will be obtained in the Hilbert space \mathscr{H}_{ω} of functions $u: (-\infty, 0) \to \mathbf{H}$ which are square-summable with the measure $e^{-2\omega t}$ dt for appropriate $\omega \in \mathbb{R}$. That is, $u \in W^{1,2}_{w}((-\infty, 0), \mathbf{H})$, the class of functions u in \mathscr{H}_{ω} whose (strong) derivatives u' belong to \mathscr{H}_{ω} .

We first show that the linear operator " $(d/dt) + \mu$ " is maximal monotone on \mathcal{H}_{ω} when $\mu + \omega \ge 0$. Then we obtain

THEOREM 1. Let A be maximal monotone in **H**, $A(0) \ni 0$ and $\omega + \mu > 0$. For each $f \in W^{1,2}_{\omega}((-\infty, 0), \mathbf{H})$ there exists a unique solution $u \in W^{1,2}_{\omega}((-\infty, 0), \mathbf{H})$ of (1.1).

For a restricted class of maximal montone operators, the subdifferentials, we obtain a corresponding result. Let $\varphi \colon H \to R \cup \{+\infty\}$ be a proper, convex and lower semicontinuous function. The operator on H defined by

$$\partial \varphi(u) \equiv \{ f \in \mathbf{H} : (f, v - u)_H \le \varphi(v) - \varphi(u) \text{ for all } v \in \mathbf{H} \}$$

is a maximal monotone $\partial \varphi$ called the subdifferential of φ [2].

Theorem 2. Let φ : $\mathbf{H} \to [0, +\infty]$ be convex and lower semicontinuous with $\varphi(u_0) = 0$ for some $u_0 \in \mathbf{H}$. The operator " $(d/dt) + \mu + \partial \varphi$ " is maximal monotone on \mathscr{H}_{ω} in each of the following situations: (a) $\mu \geq 0$, $2\omega + \mu \geq 0$ and one of $\mu = 0$ or $\varphi(0) = 0$ or $\omega < 0$; (b) $\mu < 0$, there is a $p \geq 2$ such that $\varphi(\lambda u) \leq \lambda^p \varphi(u)$ for all $\lambda \geq 1$, and $2\omega + p\mu > 0$. If, in

^{*}This work was supported in part by a National Science Foundation grant.

Received by the editors on October 4, 1978, and in revised form January 29, 1979.

Copyright © 1980 Rocky Mountain Mathematics Consortium