SINGULAR NONLINEAR EVOLUTION EQUATIONS

R. E. SHOWALTER*

Abstract

Sufficient conditions are given to obtain existence and uniqueness of strong solutions to $u^{\prime}(t)+A(u(t)) \ni f(t)$ on $(-\infty, 0)$ where A is a maximal monotone operator in Hilbert space. Applications to certain nonlinear problems for partial differential equations are described.

1. Introduction. We shall consider nonlinear evolution equations of the form

$$
\begin{equation*}
\frac{d u(t)}{d t}+\mu u(t)+A(u(t)) \ni f(t),-\infty<t<0 \tag{1.1}
\end{equation*}
$$

in a Hilbert space \mathbf{H}, where $\mu \in \mathbf{R}$, the real numbers, and A is a maximal monotone operator in \mathbf{H} [2]. The solution will be obtained in the Hilbert space \mathscr{H}_{ω} of functions $u:(-\infty, 0) \rightarrow \mathbf{H}$ which are square-summable with the measure $e^{-2 \omega t} d t$ for appropriate $\omega \in \mathbf{R}$. That is, $u \in W_{w}^{1,2}((-\infty, 0), \mathbf{H})$, the class of functions u in \mathscr{H}_{ω} whose (strong) derivatives u^{\prime} belong to \mathscr{H}_{ω}.

We first show that the linear operator " $(d / d t)+\mu$ " is maximal monotone on \mathscr{H}_{ω} when $\mu+\omega \geqq 0$. Then we obtain

Theorem 1. Let A be maximal monotone in $\mathbf{H}, A(0) \ni 0$ and $\omega+\mu>0$. For each $f \in W_{\omega}^{1,2}((-\infty, 0), \mathbf{H})$ there exists a unique solution $u \in$ $W_{\omega}^{1,2}((-\infty, 0), \mathbf{H})$ of (1.1).

For a restricted class of maximal montone operators, the subdifferentials, we obtain a corresponding result. Let $\varphi: \mathbf{H} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a proper, convex and lower semicontinuous function. The operator on \mathbf{H} defined by

$$
\partial \varphi(u) \equiv\left\{f \in \mathbf{H}:(f, v-u)_{H} \leqq \varphi(v)-\varphi(u) \text { for all } v \in \mathbf{H}\right\}
$$

is a maximal monotone $\partial \varphi$ called the subdifferential of φ [2].
Theorem 2. Let $\varphi: \mathbf{H} \rightarrow[0,+\infty]$ be convex and lower semicontinuous with $\varphi\left(u_{0}\right)=0$ for some $u_{0} \in \mathbf{H}$. The operator " $(d / d t)+\mu+\partial \varphi$ " is maximal monotone on \mathscr{H}_{ω} in each of the following situations: (a) $\mu \geqq 0$, $2 \omega+\mu \geqq 0$ and one of $\mu=0$ or $\varphi(0)=0$ or $\omega<0$; (b) $\mu<0$, there is a $p \geqq 2$ such that $\varphi(\lambda u) \leqq \lambda^{p} \varphi(u)$ for all $\lambda \geqq 1$, and $2 \omega+p \mu>0$. If, in

[^0]
[^0]: *This work was supported in part by a National Science Foundation grant.
 Received by the editors on October 4, 1978, and in revised form January 29, 1979.
 Copyright © 1980 Rocky Mountain Mathematics Consortium

