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ABSTRACT. The Lie derivative (LxOp of a tensor field / at a point 
p on a differentiable space S may not be well defined. At each point 
p e S there is, however, a subspace LPS ç TPS such that (Lxt )p is 
well defined if and only if X(p) e LPS. For any differentiable space, 
LpS = TpS for every/? in the complement of a nowhere dense sub-
space. In case S is either a coherent real-analytic space or a differ­
entiable space of polyhedral type, then LPS = TpS at every/? e S. 

Introduction. On a differentiable manifold M the Lie derivative Lxt 
is well defined for any differentiable vector field X and any differentiable 
tensor field t. This need not be true, however, if M is more generally a 
differentiable space having singular points (and if the covariant rank of t 
is positive). The purpose of this note, then, is to characterize those vector 
fields X on a differentiable space such that Lxt is well defined for every 
differentiable tensor field t. In fact, for each point p of a differentiable 
space S we identify a subspace LpS of the tangent space TpS such that 
(Lxt)p is well defined for every / if and only if X(p) e LpS. 

In § 1 we review some notions about differentiable spaces from a dif­
ferent point of view than that of [4]. In §2 we give examples showing that 
L>xt need not always be well defined, characterize LpS, and discuss the 
effects on L^S of weakening the differentiable structure of S. This charac­
terization of LpS together with a general result from §1 shows that the 
set of points p where (JLxt)p is possibly not well defined is always nowhere 
dense in S. In §3 we apply these results to show that every C°° vector field 
on a coherent real analytic space gives well defined Lie derivatives. In §4 
we explicitly calculate LpS when S is locally diffeomorphic to polyhedral 
subsets of cartesian spaces. This calculation shows that every differenti­
able vector field on polyhedral spaces gives well defined Lie derivatives. 

Throughout the paper we use the notion of smoothness category in­
troduced by Palais in [5]. For the reader's convenience we have included 
a short appendix at the end of §1 recapitulating the definition and several 
results from [5]. Without mention to the contrary, "smooth" will mean 
^-smooth, where <g is some smoothness category. Finally, throughout 
the paper R1, Rn will denote the real cartesian spaces. 
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