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CONTINUITY ON R(X) 

JAMES LI-MING WANG 

1. Let X be a compact subset of the plane. We denote by R(X) the 
uniform closure of R0(X), the set of rational functions having no poles 
on X. We say that <j> is an admissible function if (a) <j> is a positive, non-
decreasing function defined on (0, oo) and (b) \p(r) — r/<j>(r) is also non-
decreasing and limr^0+ r/<j>(r) — 0. 

Fix x E X. Suppose <f> is an admissible function and <£>(0+) = 0. We 
say that the unit ball of R(X) admits <j> as a modulus of approximate 
continuity at x if 

\f(y) - f(x)\ =i <j>(\y - x\) for all / G B(X), \\f\\ ^ 1 

and all y in a subset having full area density at x. Some properties con
cerning the modulus of approximate continuity have been investigated 
in [5] and [6]. It is known, for instance, at a non-peak point x, there ex
ists an admissible function <j> with <j>(0+) = 0 such that the unit ball of 
R(X) admits e<j> as a modulus of approximate continuity at x, for every 
c > 0 . 

One can define a fractional order bounded point derivation in terms 
of representing measure, analytic capacity and modulus of approximate 
continuity respectively. However, it turns out that the definitions are 
not equivalent (see [6]). 

Although the existence of modulus of approximate continuity at a 
point is in general a weaker condition than some other properties, we 
will show that it does imply that X has more than full area density at 
that point (Corollary 3). 

Let E be a bounded plane set and denote by H(E) the set of func
tions holomorphic off a compact subset of E, bounded in modulus by 
one, which vanish at oo. The analytic capacity of E is 
y(E) = sup{ | f (oo) | : /e H(E)}. 

In [6], it was conjectured that the convergence of a "generalized 
Melnikov's series,, implies the unit ball of R(X) admits <j> as a modulus 
of approximate continuity at a point. We are unable to prove this. Us
ing a well known localization procedure and Melnikov's estimate for 
Cauchy integrals [2], however, we can get a weaker result (Theorem 4). 
Hayashi [3] has obtained a similar result independently when he consid
ered the case of the first order bounded point derivations. 
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