THE GENERALIZED SPECTRUM OF SECOND ORDER ELLIPTIC SYSTEMS

M. H. PROTTER

1. Introduction. Let $\Omega \subset R^{n}$ be a bounded domain with smooth boundary. Suppose that $L_{\alpha \beta}, \alpha, \beta=1,2, \cdots, m$ are second order elliptic operators without zero order terms which act on functions $u: \Omega \rightarrow \mathbf{C}^{m}$. The spectrum of the system

$$
\sum_{\beta=1}^{m} L_{\alpha \beta}+\mu \sum_{\beta=1}^{m} c_{\alpha \beta} u^{\beta}=0, \alpha=1,2, \cdots, m
$$

subject to appropriate homogeneous boundary conditions is known to consist of a discrete increasing set of numbers $\mu_{1}, \mu_{2}, \cdots, \mu_{n}, \cdots$.

In the case of a single equation with the Laplace operator as principal part and with homogeneous Dirichlet boundary conditions, a particularly simple method for obtaining a lower bound to the first eigenvalue μ_{1} was obtained by Barta [1] who showed that

$$
\mu_{1} \geqq \inf _{x \in \Omega}\left(-\frac{\Delta \varphi}{\varphi}\right) .
$$

Here φ is an arbitrary C^{2} function defined in Ω. This estimate is useful and of interest since the function φ is required to satisfy only a smoothness condition and not a boundary condition. This inequality was extended and generalized to general second order operators in [10]. There it is shown, for example, that μ_{1}, the first eigenvalue for the Laplace operator subject to zero boundary conditions satisfies the inequality

$$
\mu_{1} \geqq \inf _{x \in \Omega}\left(\operatorname{div} P-|P|^{2}\right)
$$

where P is a vector field in Ω which is only required to satisfy a mild smoothness condition. The Barta inequality is recovered by setting $P_{i}=-\varphi_{x_{i}} / \varphi$ with φ an arbitrary C^{2} function. Further extensions of these inequalities were obtained by Hersch [4]. Hooker [5] developed analogous results for second order equations with mixed boundary conditions and he also treated the eigenvalue problem for the biharmonic operator subject to a variety of boundary conditions.

Upper and lower bounds for the eigenvalues of second order operators have been obtained by a variety of methods. We mention the investigations of Fichera [3], Payne and Weinberger [9], Weinberger [12],

[^0]
[^0]: Received by the editors on August 2, 1977, and in revised form on October 30, 1977.

