INTRODUCTION TO DIFFERENTIAL EQUATIONS WITH MOVING SINGULARITIES

H. GINGOLD

Consider the differential system

(1)
$$\begin{cases} y' = F(t, \epsilon, y, x) \\ \epsilon^{h} \phi(t, \epsilon) x' = G(t, \epsilon, y, x) \end{cases}$$

with the following hypothesis that we will call *H*.

 $H - (i) \ y$ is an *m* dimensional column vector and *x* is an *n* dimensional column vector. $F(t, \epsilon, y, x)$, $G(t, \epsilon, y, x)$ are continuously differentiable vector functions in the domain *D*, where

$$D = \{0 \leq t \leq 1, 0 \leq \epsilon \leq \epsilon_0, (\epsilon_0 > 0), (\|y\| + \|x\|) < \infty\},\$$

(ii) $h \ge 0$ (*h* need not be an integer) and $\phi(t, \epsilon)$ is a continuously differentiable scalar function in *D*,

(iii) $\phi(t, \epsilon) > 0$ for $0 \leq t \leq 1$, $0 < \epsilon < \epsilon_0$, $\phi(t, 0) \cdot \phi(0, \epsilon) \neq 0$. If h = 0 we demand that $\phi(0, 0) = 0$ and

$$\lim_{\epsilon \to 0^+} \int_0^t \frac{d\eta}{\phi(\eta, \epsilon)} = +\infty \text{ uniformly}$$

for

$$0 < \delta \leq t \leq 1.$$

In the case when h > 0 and $\phi(t, \epsilon) \equiv 1$, we recognize the singular perturbation systems, in case h = 0 and $\phi(t, \epsilon) = (t + \epsilon)^m$, we have by letting $\epsilon = 0$, the familiar singular systems of mathematical physics. We call (1) a differential equation with *moving singularities* since the location of the zeros of $\phi(t, \epsilon)$ may depend on ϵ . For example,

(2)
$$y_1' = y_2$$

$$\boldsymbol{\epsilon}(t^2+\boldsymbol{\epsilon})y_2{\,}'=+y_1{\,}^3-y_2,$$

(3)
$$y_1 = y_2$$

 $(t + \epsilon)^2 y_2' = y_1 + y_2,$

(4)
$$y_1' = y_1 + 2y_2$$
$$\epsilon y_2' = 4y_1 + (t^2 + \epsilon)y_2$$

are special types of differential equations with moving singularities.

Copyright © 1976 Rocky Mountain Mathematics Consortium