RIEMANN'S FUNCTIONAL EQUATION

C. RYAVEC

It is well known that $\zeta(s)$, the Riemann Zeta function, satisfies the functional equation

$$
\begin{equation*}
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s) . \tag{1}
\end{equation*}
$$

In 1921, it was shown by Hamburger (See [2]) that $\zeta(s)$, as a member of a wide class of ordinary Dirichlet series, could be characterized by equation (1). Hamburger considered, in fact, a more general problem, the solution of the functional equation

$$
\begin{equation*}
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) f(s)=\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) g(1-s), \tag{2}
\end{equation*}
$$

where "solution" here (and for the balance of the paper) refers to a pair of Dirichlet series, ($f(s), g(s)$) satisfying equation (2). Hamburger imposed conditions on $f(s)$ and $g(s)$ which, together with the fact that they satisfy equation (2), necessitated that they satisfy $f(s)=$ $g(s)=c \zeta(s)$.

Subsequently, other researchers have found different sets of conditions, which, when imposed on the solutions of (2), have again led to the same conclusion that $f(s)=g(s)=c \zeta(s)$. (See [1] and [5].) For example, a corollary to a theorem in [5] is the
Theorem 1. Let $f(s)=\sum_{j=1}^{\infty} a_{j} \mu_{j}^{-s}=\prod_{j=1}^{\infty}\left(1-\pi_{j}^{-s}\right)^{-1}$, $1<\pi_{1} \leqq \pi_{2} \leqq \cdots, \pi_{j} \rightarrow \infty$, be a general Dirichlet series, with an Euler product representation, which converges for $\operatorname{Re}(s)>1$. Suppose that $f(s)=E(s)(s-1)^{-1}$, where $E(s)$ is an entire function of finite order such that $E(1)=1$ and $E(0)=1 / 2$. Further, let $g(s)=$ $\sum_{k=1}^{\infty} b_{k} \nu_{k}^{-s}, 1 \leqq \nu_{1}<\nu_{2}<\cdots, \nu_{k} \rightarrow \infty$, be a general Dirichlet series which converges absolutely for $\operatorname{Re}(s) \geqq 2$. Then, if $f(s)$ and $g(s)$ are related by equation (2), it follows that $f(s)=g(s)=\zeta(s)$.

We mention that an essential difference between the hypotheses of Hamburger's theorem and the hypothesis of Theorem 1, is that Hamburger assumed that $\mu_{j} \in Z^{+}, j=1,2, \cdots$, whereas in Theorem $1, f(s)$ may be a general Dirichlet series, albeit with an Euler product representation.

Received by the editors October 26, 1973.
AMS Subject Classification: Primary 10H10.

