HOMOTOPY-ALGEBRAIC STRUCTURES

F. D. WILLIAMS

In topology, there are many objects of study that consist of a space together with an "operation" on it. One may think of a topological group structure, an H -space structure, a homotopy self-equivalence, etc. One wishes to classify such operations up to homotopy and to consider the possible relations such an operation may satisfy. In this paper we provide a general framework to study these questions in terms of the Postnikov system of the space in question. Our model is the well-known fact that a space is an H -space if and only if its Postnikov invariants are primitive, and we are inspired by the work of Stasheff, [7].

The spaces we shall consider will be connected CW-complexes with basepoint. Let X be such a space, with x_{0} its basepoint. Denote the cartesian product of n copies of X by X^{n} and let $T_{1}{ }^{n}(X)$ be the subspace of X^{n} consisting of all points at least one of whose coordinates is the basepoint.

Definition 1. An (n-ary) operation on X consists of a pointed continuous function $\phi: X^{n} \rightarrow X$.

Let $\exists X$ denote the (Moore) free path-space of X, i.e., the set of all pairs (λ, r) such that $r \geqq 0$ and $\lambda:[0, r] \rightarrow X$ is continuous. We have two projections of $\exists X$ onto X, π_{0} and π_{∞}, given by $\pi_{0}(\lambda, r)=\lambda(0)$ and $\pi_{\infty}(\lambda, r)=\lambda(r)$. The basepoint of $\exists X$ is taken to be the pair $\left(\lambda_{0}, 0\right)$ such that $\lambda_{0}(0)=x_{0}$.
Definition 2. If $\phi, \psi: X^{n} \rightarrow X$ are operations, a relation between ϕ and ψ is a homotopy $R: X^{n} \rightarrow \Im X$ such that $\pi_{0} \circ R=\phi$ and $\pi_{\infty} \circ R$ $=\psi$.

Remark. Since $T_{1}{ }^{n}(X)$ is retractile [3] in X^{n}, if ϕ and ψ agree on $T_{1}{ }^{n}(X)$, then R may be chosen to remain fixed on $T_{1}{ }^{n}(X)$.

Definition 3. Suppose that $\phi: X^{n} \rightarrow X$ and $\phi_{1}: X_{1}{ }^{n} \rightarrow X_{1}$ are operations. A map $f: X \rightarrow X_{1}$ is called a $\left(\boldsymbol{\phi}, \boldsymbol{\phi}_{1}\right)$-map provided that there exists a homotopy $H: X^{n} \rightarrow \ni X_{1}$ such that $\pi_{0} \circ H=\phi_{1} \circ f^{n}$ and $\pi_{\infty} \circ H=f \circ \phi$.

Observe that $\exists X$ is a functor in X, i.e., that given $f: X \rightarrow Y$ we may define $\exists f: \exists X \rightarrow \exists Y$ by $\exists f(\lambda)[t]=f(\lambda(t))$.

[^0]
[^0]: Received by the editors April 29, 1973 and in revised form September 1, 1973.

