EXTRAPOLATION TO THE LIMIT BY USING CONTINUED FRACTION INTERPOLATION

LUC WUYTACK

1. The extrapolation problem. Assume that a convergent sequence $\{a_0, a_1, a_2, \cdots\}$ of real numbers is given with A as limit. In order to find the limit A numerically one can form a new sequence $\{b_i\}$, which has also A as limit and whose convergence is faster. One way to perform the determination of $\{b_i\}$ is to use extrapolation methods.

Let $\{x_0, x_1, \cdots\}$ be a convergent sequence of points with z as limit. The essential idea in extrapolation is to define a sequence of interpolating functions $\{y_0(x), y_1(x), \cdots\}$ such that $y_n(x_i) = a_i$ for i = 0, 1, $\cdots n$ and $n = 0, 1, 2, \cdots$. The elements b_i can be defined as follows $b_i = \lim_{x \to z} y_i(x)$ for $i = 0, 1, 2, \cdots$, if these limits exist and are finite. The points x_i are called interpolation points and z is called the extrapolation point.

Let $R(\ell, m)$ be the class of ordinary rational functions $r_{\ell,m} = p/q$ where the degree of p is at most ℓ and the degree of q at most m. Under certain conditions it is possible to construct a set of rational functions $r_{\ell,m}$ for $\ell, m = 0, 1, 2, \cdots$, satisfying $r_{\ell,m}(x_i) = a_i$ for $i = 0, 1, \cdots, \ell + m$. This set of functions can be arranged in a table as follows

<i>r</i> _{0,0}	<i>r</i> _{0,1}	$r_{0,2}$	$r_{0,3}$	
$r_{1,0}$	$r_{1,1}$	$r_{1,2}$	$r_{1,3}$	_
<i>r</i> _{2,0}	$r_{2,1}$	<i>r</i> _{2,2}	<i>r</i> _{2,3}	_
		_		

In the method of Neville (polynomial extrapolation) the first column is constructed. In the method of Bulirsch and Stoer (rational extrapolation) the "staircase" $r_{0,0}$, $r_{1,0}$, $r_{1,1}$, $r_{2,1}$, \cdots is constructed. In both methods z = 0 is used as extrapolation point and this makes the calculation of $b_{k+m} = r_{k,m}(z)$ very simple.

The elements $r_{0,0}$, $r_{1,1}$, $r_{2,2}$, \cdots can be found by using Thiele's method for continued fraction interpolation. If $z = \infty$ is taken as extrapolation point then the values of b_i can be computed by using a method similar to the ϵ -algorithm (see [1], p. 186 and [2]).

This work was supported in part by the NFWO (Belgium) and a NATO-Fellow-ship.