EXTRAPOLATION TO THE LIMIT BY USING CONTINUED FRACTION INTERPOLATION

LUC WUYTACK

1. The extrapolation problem. Assume that a convergent sequence $\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}$ of real numbers is given with A as limit. In order to find the limit A numerically one can form a new sequence $\left\{b_{i}\right\}$, which has also A as limit and whose convergence is faster. One way to perform the determination of $\left\{b_{i}\right\}$ is to use extrapolation methods.

Let $\left\{x_{0}, x_{1}, \cdots\right\}$ be a convergent sequence of points with z as limit. The essential idea in extrapolation is to define a sequence of interpolating functions $\left\{y_{0}(x), y_{1}(x), \cdots\right\}$ such that $y_{n}\left(x_{i}\right)=a_{i}$ for $i=0,1$, $\cdots n$ and $n=0,1,2, \cdots$. The elements b_{i} can be defined as follows $b_{i}=\lim _{x \rightarrow z} y_{i}(x)$ for $i=0,1,2, \cdots$, if these limits exist and are finite. The points x_{i} are called interpolation points and z is called the extrapolation point.

Let $R(\ell, m)$ be the class of ordinary rational functions $r_{\ell, m}=p / q$ where the degree of p is at most ℓ and the degree of q at most m. Under certain conditions it is possible to construct a set of rational functions $r_{\ell, m}$ for $\ell, m=0,1,2, \cdots$, satisfying $r_{\ell, m}\left(x_{i}\right)=a_{i}$ for $i=0$, $1, \cdots, \ell+m$. This set of functions can be arranged in a table as follows

$r_{0,0}$	$r_{0,1}$	$r_{0,2}$	$r_{0,3}$	-
$r_{1,0}$	$r_{1,1}$	$r_{1,2}$	$r_{1,3}$	-
$r_{2,0}$	$r_{2,1}$	$r_{2,2}$	$r_{2,3}$	-
-	-	-	-	-

In the method of Neville (polynomial extrapolation) the first column is constructed. In the method of Bulirsch and Stoer (rational extrapolation) the "staircase" $r_{0,0}, r_{1,0}, r_{1,1}, r_{2,1}, \cdots$ is constructed. In both methods $z=0$ is used as extrapolation point and this makes the calculation of $b_{\ell+m}=r_{\ell, m}(z)$ very simple.

The elements $r_{0,0}, r_{1,1}, r_{2,2}, \cdots$ can be found by using Thiele's method for continued fraction interpolation. If $z=\infty$ is taken as extrapolation point then the values of b_{i} can be computed by using a method similar to the ϵ-algorithm (see [1], p. 186 and [2]).

[^0]
[^0]: This work was supported in part by the NFWO (Belgium) and a NATO-Fellowship.

