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SEQUENCES OF IRRATIONAL FRACTION APPROXIMANTS
TO SOME HYPERGEOMETRIC FUNCTIONS

L. R. SHENTON

I. Introduction. Let the Gauss continued fraction (C.F.) for R(x) =
In((x + 1)/(x — 1)), with x real and || > 1, have convergents L, =
N,/D,, where for example, Ny = 0, Dy = 1; N, = 2, D, = x; N, = 3x,
D, = (3x2 — 1)[2, etc. Also let u, = D,D,,o — D%, ,, vy, = D;N,,5 +
D,,sN, — 2D, N,,1, w; = N,N,,5 — NZ;;. Then I have shown [1]
that if

W R, = {(s + 2)(s + 1)v, + 2{(2s + 3)%2

—4(s+ 2)(s + 1)}12Y{(s + 2)(s + L)u,},

then for x > 1, {R,} is monotonic increasing, has the limit R(x) and
(2) Ls+l < Rs—l < R(x)-

For example, R(x) > (—x + (9x2 — 8)12)/(x2 — 1).
Similarly, if R(¢) is the Laplace C.F. for Mills’s ratio for the normal
integral, and

1 1 2 3
3 Rf)=~+  —=— = 2 ,
®) O v T+t + 1+ >0,

with convergents X,/w,, then [2] with u,, v,, w, defined in terms of
the convergents as before, if

(4a) Ry = (vg, + (28)! (2 + 8s + 4)112)/(2uy,),
and
(4b) Rosi1 = 2Woey 1 /{Ugs+; + (2s + 1)! (12 + 8s + 8)112},
we have convergent monotonic sequences
(5) Ry< Ro< R, "< R< :--*R;< Ry < R, t=0.
II. Irrational Approximants to the Confluent Hypergeometric Func-
tion. With the usual notation, the Gauss C.F. [5] is

1ot b

Fa,L;c;t) = - 1 — I —...
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