SEQUENCES OF IRRATIONAL FRACTION APPROXIMANTS TO SOME HYPERGEOMETRIC FUNCTIONS

L. R. SHENTON

I. **Introduction.** Let the Gauss continued fraction (C.F.) for $R(x) = \ln((x+1)/(x-1))$, with x real and |x| > 1, have convergents $L_s = N_s/D_s$, where for example, $N_0 = 0$, $D_0 = 1$; $N_1 = 2$, $D_1 = x$; $N_2 = 3x$, $D_2 = (3x^2 - 1)/2$, etc. Also let $u_s = D_s D_{s+2} - D_{s+1}^2$, $v_s = D_s N_{s+2} + D_{s+2}N_s - 2D_{s+1}N_{s+1}$, $w_s = N_s N_{s+2} - N_{s+1}^2$. Then I have shown [1] that if

(1)
$$R_s = \{(s+2)(s+1)v_s + 2\{(2s+3)^2x^2 - 4(s+2)(s+1)\}^{1/2}\}/\{(s+2)(s+1)u_s\},$$

then for x > 1, $\{R_s\}$ is monotonic increasing, has the limit R(x) and

$$(2) L_{s+1} < R_{s-1} < R(x).$$

For example, $R(x) > (-x + (9x^2 - 8)^{1/2})/(x^2 - 1)$.

Similarly, if R(t) is the Laplace C.F. for Mills's ratio for the normal integral, and

(3)
$$R(t) = \frac{1}{t} + \frac{1}{t} + \frac{2}{t} + \frac{3}{t} + \cdots, \quad t > 0,$$

with convergents χ_s/ω_s , then [2] with u_s , v_s , w_s defined in terms of the convergents as before, if

(4a)
$$R_{2s} = (v_{2s} + (2s)! (t^2 + 8s + 4)^{1/2})/(2u_{2s}),$$

and

(4b)
$$R_{2s+1} = 2w_{2s+1}/\{v_{2s+1} + (2s+1)!(t^2+8s+8)^{1/2}\},$$

we have convergent monotonic sequences

(5)
$$R_0 < R_2 < R_4 \cdot \cdot \cdot < R < \cdot \cdot \cdot R_5 < R_3 < R_1, t \ge 0.$$

II. Irrational Approximants to the Confluent Hypergeometric Function. With the usual notation, the Gauss C.F. [5] is

$$F(a, 1; c; t) = \frac{1}{1} - \frac{b_1 t}{1} - \frac{b_2 t}{1} - \cdots,$$