DIOPHANTINE APPROXIMATION IN A VECTOR SPACE

F. A. ROACH

1. Throughout this paper, we suppose that S is a real inner product space of dimension at least two and that e is a point of S with unit norm. We denote by S' that subspace of S which has the property that if z belongs to it, then ((z, e)) = 0, and let u denote a point of S' which has unit norm. For each point z of S, we denote the point 2((z, u))u - z by \overline{z} and the point $\overline{z}/||z||^2$ by 1/z. (We assume that there is adjoined to S a "point at infinity" with the usual conventions.) It should be noted that if S is one of E^2 , E^3 , E^5 , and E^9 , e is the unit vector with last coordinate 1, and u is the unit vector with first coordinate 1, then 1/z restricted to S' reduces to the ordinary reciprocal for real numbers, complex numbers, quaternions, and Cayley numbers, respectively.

Suppose that U is a subset of S' having the following properties:

(i) each element of U is a point of S' with unit norm,

(ii) u belongs to U,

(iii) if x belongs to U, then so do -x and \overline{x} ,

(iv) if x and y belong to U, then 2((x, y)) is integral, and

(v) if z is a point of S', there exists a finite sequence x_1, x_2, \dots, x_k , with each term in U, and a finite sequence n_1, n_2, \dots, n_k , with each term an integer, such that $||z - (n_1x_1 + n_2x_2 + \dots + n_kx_k)|| < 1$. It is not difficult to see that such a set U exists even when S is infinite dimensional. Notice that when S is one of E^2 , E^3 , E^5 , and E^9 with eand u as above, we may take U to be the set of all units of an appropriate ring of integers.

2. We will now give some definitions which facilitate the statement of the diophantine approximation result below.

A point z of \overline{S}' is said to be integral with respect to U (or U-integral) if and only if there exists a finite sequence x_1, x_2, \dots, x_k , with each term in U, and a finite sequence n_1, n_2, \dots, n_k , with each term an integer, such that $z = n_1x_1 + n_2x_2 + \dots + n_kx_k$. A point z of S' is said to be rational with respect to U (or U-rational) if and only if there exists a finite sequence $b_0, b_1, b_2, \dots, b_k$, with each term U-integral, such that z is the value of the continued fraction

(2.1)
$$b_0 + \frac{1}{b_1} + \frac{1}{b_2} + \cdots + \frac{1}{b_k}$$

A point of S' which is not U-rational is said to be *irrational with* respect to U (or U-irrational). If each one of $b_0, b_1, b_2, \dots, b_k$ is U-integral, we denote by $D(b_0, b_1, b_2, \dots, b_k)$ the number

Copyright © 1974 Rocky Mountain Mathematics Consortium