A PRIORI TRUNCATION ERROR ESTIMATES FOR CONTINUED FRACTIONS $K(1/b_n)$

DAVID A. FIELD

The primary goal is to obtain *a priori* truncation error estimates of continued fractions of the form

$$K(1/b_n) = \frac{1}{b_1} + \frac{1}{b_2} + \cdots,$$

where for each $n = 1, 2, \dots, b_n \in E_n$, and the E_n are subsets of the complex plane called element regions. The method employed is based upon a correspondence between sequences of element regions and sequences of value regions which determine a nested sequence of disks. Truncation error bounds are obtained by estimating the diameter of the *n*th disk which contains the *n*th approximant $f_n = A_n/B_n$ of the continued fraction; the A_n and B_n denote the *n*th numerator and denominator respectively.

The element regions E_n , can be disks, half-planes, and/or complements of disks. The following theorem, from which the results of Hillam, Sweezy and Thron ([2], [3]) are easily derived, is a typical result. In this theorem the E_n are complements of disks.

Let $\{c_n\}$ be a sequence of complex numbers and let $\{r_n\}$ and $\{\delta_n\}$ be sequences of real numbers such that

(1)
$$0 \leq |c_n| < r_n, \, \delta_1 = 1, \, 0 < \delta_n \leq 1, \, n \geq 0.$$

Let $K(1|b_n)$ be a continued fraction with elements b_n satisfying the conditions

(2)
$$\left| b_n + c_n + \frac{\overline{c}_{n-1}}{r_{n-1}^2 - |c_{n-1}|^2} \right| \ge r_n + \frac{t_{n-1}}{\delta_n (r_{n-1}^2 - |c_{n-1}|^2)}$$

If $f_n = A_n/B_n$ denotes the *n*th approximant of $K(1/b_n)$, where A_n and B_n are the *n*th numerator and *n*th denominator respectively, then for $n \ge 2, p \ge 0$

(3)
$$|f_{n+p} - f_n| \leq 2r_0 \prod_{j=2}^n g_j(\gamma_{j-1}, \delta_j)$$
$$\leq 2r_0 \prod_{j=2}^n M_j(\delta_j) \leq 2r_0 \prod_{j=2}^n \delta_j$$

Copyright © 1974 Rocky Mountain Mathematics Consortium 361

Work supported in part by the Air Force Office of Scientific Research under Grant No. AFOSR-70-1888.