THE BOUNDING PROPERTIES OF THE MULTIPOINT PADÉ APPROXIMANT TO A SERIES OF STIELTJES ON THE REAL LINE

MICHAEL BARNSLEY

The present results have been proved by Barnsley [2] using a continued fractions approach, based on earlier work by Baker [1]. They have also been established variationally by Epstein and Barnsley [3].

Let $F(x)$ be representable by a series of Stieltjes with radius of convergence (at least) $R \geqq 0$. Then $F(x)$ is an analytic function for $x \in(-R, \infty)$, and can be written in the form

$$
F(x)=\int_{0}^{1 / R} \frac{d \phi(u)}{(1+u x)},
$$

where $\boldsymbol{\phi}(u)$ is a bounded monotone non-decreasing function which attains infinitely many different values for $u \in[0,1 / R)$. Let $-R<x_{1}$ $<x_{2}<\cdots<x_{Q}<\infty$ and $F^{(n)}\left(x_{p}\right)\left(n=0,1, \cdots, N_{p}-1 ; p=1,2\right.$, $\cdots, Q)$ be given, with $N_{p} \geqq 1$ and $\sum_{p=1}^{O_{p}} N_{p}=N$. Then we have N pieces of information about $F(x)$ associated with Q points. The corresponding multipoint Padé approximant to $F(x)$ is defined as the function $F_{N(\rho)}(x)=A_{N}(x) / B_{N}(x)$ where $A_{N}(x)$ and $B_{N}(x)$ are the polynomials of degrees $[(N-1) / 2]$ and $[N / 2]$, respectively, which are uniquely specified by the requirements

$$
F_{N(Q)}^{(n)}\left(x_{p}\right)=F^{(n)}\left(x_{p}\right), n=0,1, \cdots, N_{p}-1 ; p=1,2, \cdots, Q,
$$

together with $B_{N}(0)=1$, say. Here $[R]$ denotes the integer part of the number R. The existence of $F_{N(Q)}(x)$ thus defined is assured because $F(x)$ is representable by a series of Stieltjes: for $F(x)$ an arbitrary function the corresponding multipoint Padé approximant must be defined in terms of the "modified" interpolation problem [4]. To actually obtain $F_{N(Q)}(x)$ one can either linearize the set of defining equations, or else use a continued fractions approach [2]. For the case $Q=N$, Wuytack [5] has presented applicable algorithms.

The bounding properties of $F_{N(Q)}(x)$ with respect to $F(x)$ are

$$
\begin{aligned}
& F_{N(Q)}(x)<F(x), \text { for }-R<x<x_{1}, \\
& \operatorname{sgn}\left(F(x)-F_{N(Q)}(x)\right)=(-1)^{N_{1}+N_{2}+\cdots+N_{p}}, \\
& \text { for } x_{p}<x<x_{p+1}(p=1,2, \cdots, Q-1), \\
& \operatorname{sgn}\left(F(x)-F_{N(Q)}(x)\right)=(-1)^{N}, \text { for } x_{Q}<x<\infty . \\
& \quad \begin{array}{c}
\text { Copyright } 1974 \text { Rocky Mountain Mathematics Consortium }
\end{array}
\end{aligned}
$$

