THE ROLE OF THE POLE IN RATIONAL APPROXIMATION

J. L. WALSH

The purpose of this paper is to present some old and some recent results that seem to indicate the current direction of growth of the theory of approximation by rational functions. An older result is in Walsh [10, §8.7].

Тнеовем 1. In the z-plane, let the Jordan curve C_{0} contain in its interior the Jordan curve C_{1}, and let the two curves bound the region B. Let the function $U(z)$ be harmonic in B, continuous on C_{0} and C_{1}, equal to zero and unity on those respective curves. Let C_{r} denote generically the level locus $U(z)=r, 0<r<1$, in B. Then there exist points $\alpha_{n k}(k=1,2, \cdots, n)$, and points $\beta_{n k}(k=1,2, \cdots, n+1)$ equally spaced on C_{0} and C_{1} respectively with regard to the conjugate of $U(z)$ in C, so that if $f(z)$ is a function analytic throughout the closed interior of C_{μ} and if $r_{n}(z)$ denotes the rational function of degree n with poles in the $\alpha_{n k}$ and interpolating to $f(z)$ in the $\beta_{n k}$, then we have ($\mu^{\prime}>\mu$)

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} {\left.\left[\max \left|f(z)-r_{n}(z)\right|, z \text { on and within } C_{\mu^{\prime}}\right]\right]^{1 / n} } \\
& \leqq e^{-2 \pi\left(\mu^{\prime}-\mu\right) / r,} \tag{1}
\end{align*}
$$

where $\tau=\int_{C_{r}}(\partial U / \partial \nu) d s, \nu$ being the interior normal on C_{r}.
For approximation by polynomials in a Jordan arc we have [11, § 2.3].

Theorem 2. Let C be an analytic Jordan arc in the z-plane, let $f(z)$ be defined on C, and let $z=\phi(w)$ map C one-to-one and conformally onto the line segment $\mathrm{S}:-1 \leqq w \leqq 1$. Then a necessary and sufficient condition that there exist polynomials $P_{n}(z)$ of respective degrees n satisfying

$$
\begin{equation*}
\left|f(z)-p_{n}(z)\right| \leqq A / n^{p+\alpha}, z \text { on } C, 0<\alpha<1, \tag{2}
\end{equation*}
$$

is that $f[\phi(\cos \theta)]$ possess on S a p th derivative with respect to θ which satisfies a Lipschitz condition there with respect to θ.

If C itself is S, Theorem 2 becomes the classical results in the real

[^0]
[^0]: Received by the Editors February 8, 1973.
 ${ }^{1}$ Research supported (in part) by U.S. Air Force, under Grant AFOSR 69-1690.

