P-FRACTIONS AND THE PADÉ TABLE ${ }^{1}$

ARNE MAGNUS

The regular continued fraction of a positive real number x_{0} is obtained by writing x_{0} as the sum of the greatest integer $\left[x_{0}\right.$] in x_{0} and a remainder $r_{1}, 0 \leqq r_{1}<1$, that is, $x_{0}=\left[x_{0}\right]+r_{1}$. If $r_{1}>0$ we replace the "small" number r_{1} by the "large" one $1 / r_{1}=$ x_{1} and repeat the process with x_{1}, that is;

$$
\begin{aligned}
x_{0} & =\left[x_{0}\right]+r_{1}=\left[x_{0}\right]+\frac{1}{1 / r_{1}} \\
& =\left[x_{0}\right]+\frac{1}{x_{1}}=\left[x_{0}\right]+\frac{1}{\left[x_{1}\right]+r_{2}}
\end{aligned}
$$

Continuing in this fashion and setting $\left[x_{i}\right]=b_{i}, i=0,1,2, \cdots$, we arrive at the finite or infinite regular continued fraction for x_{0}

$$
x_{0}=b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots
$$

We follow an analogous procedure for the power series

$$
\begin{aligned}
f & =\sum_{n=-N_{0}}^{\infty} a_{n} x^{n} \\
& =a_{-N_{0}} x^{-N_{0}}+\cdots+a_{-1} x^{-1}+a_{0}+a_{1} x+\cdots
\end{aligned}
$$

The "small" part of f is the series $\sum_{1}^{\infty} a_{n} x^{n}$ whose first nonvanishing term we denote by $a_{N_{1}} x^{N_{1}}$ and formally write
$\left(a_{N_{1}} x^{N_{1}}+a_{N_{1}+1} x^{N_{1}+1}+\cdots\right)\left(a_{-N_{1}}^{\prime} x^{-N_{1}}+a_{-N_{1}+1}^{\prime} x^{-N_{1}+1}+\cdots\right)=1$, where $a_{-N_{1}+n}^{\prime}$ is uniquely determined by $a_{N_{1}}, \cdots, a_{N_{1}+n}$, for $n=0$, $1,2, \cdots$ We set $\sum{ }_{{ }_{-}^{0}}^{0}{ }_{0} a_{n} x^{n}=b_{0}$ and have

$$
f=\sum_{n=-N_{0}}^{\infty} a_{n} x^{n}=b_{0}+1 / \sum_{n=-N_{1}}^{\infty} a_{n}^{\prime} x^{n}
$$

The process is continued to produce a finite or infinite continued fraction, called the principal part expansion of f,

[^0]
[^0]: Received by the editors February 8, 1973.
 ${ }^{1}$ This paper was written with support from the Air Force Office of Scientific Research Grant No. 70-1922.

