THE NIELSEN FIXED POINT THEORY FOR NONCOMPACT SPACES

U. KURT SCHOLZ¹

Introduction. The Nielsen fixed point theory provides a lower bound for the number of fixed points of a map $f: X \to X$ on a compact metric ANR (absolute neighbourhood retract) ([5], [11], [15]). This lower bound, denoted by N(f) (the Nielsen number of f) is a non-negative integer and is known to be homotopy invariant ([11], [15]). Recently, Brown [7], has shown that one can obtain a Nielsen theory on noncompact ANR's by requiring only that the maps and homotopies be compact (i.e., their images have compact closure).

The purpose of this paper is to establish a Nielsen theory for very general classes of self maps (\$1) and to give a proof of the homotopy invariance of the Nielsen number. The motivation for this type of generality becomes clear in \$3 where several interesting and analytically important examples of such classes are produced.

§1. Preliminaries. Given a self map $f: X \to X$, let $\Phi(f)$ represent the set of fixed points of f. We let I denote the closed unit interval. For a given homotopy $H: X \times I \to X$, we shall make use of the following maps: $H: X \times I \to X \times I$ given by H(x, t) = (H(x, t), t); for $t \in I, h_1: X \to X$ defined by $h_t(x) = H(x, t)$; finally, for $r, s \in I$, $H^{r,s}: X \times I \to X$ defined by $H^{r,s}(x, t) = H(x, (1 - t)r + ts)$.

Let \mathfrak{P} be a class of self maps. An \mathfrak{P} -homotopy is a map $H: X \times I \to X$ such that $H^{r,s} \in \mathfrak{P}$ and $h_t \in \mathfrak{P}$ for all $r, s, t \in I$. If H is an \mathfrak{P} -homotopy, we say that h_0 and h_1 are \mathfrak{P} -homotopic.

For a given class of self maps \mathfrak{D} , we let $\mathcal{C}_{\mathfrak{D}}$ be the class of all triples (X, f, U) where $f: X \to X$ is a map in \mathfrak{D} , and U is an open subset of X which has no fixed points of f on its boundary.

Let $f: X \to X$ be a map and $H_* = \{H_p, \partial_p\}$ a rational homology theory defined for a category of spaces including X. Let $f_{*,p}: H_p(X)$ $\to H_p(X)$ denote the induced homomorphism. We say that f has a

Received by the editors February 2, 1972.

AMS 1970 subject classifications. Primary 54H25; Secondary 47H10, 55C20.

It is a pleasure to acknowledge the encouragement given me by Professor Robert F. Brown during this writing. His advice and criticism have been invaluable.

¹This work was supported by NSF Grant GU 1534.

Copyright © 1974 Rocky Mountain Mathematics Consortium