SOME C*-ALGEBRAS WITH OUTER DERIVATIONS GEORGE A. ELLIOTT

1. In [9], Sakai has given an example of a simple C*-algebra without unit every derivation of which is inner. Theorem 2 below shows that such a C*-algebra cannot be separable.

Theorem 3, the main result of this paper, gives a complete description of separable liminary C^* -algebras every derivation of which is inner.¹

A consequence of Theorem 3 is that a separable liminary C^* -algebra every derivation of which is inner is the direct sum of a commutative algebra and an algebra with unit. Theorem 2 shows that this implication holds for a separable primitive C^* -algebra, and a modification of the proof of Theorem 3 (see 4.3) shows that it holds for a separable C^* -algebra whose primitive spectrum is separated.²

Another consequence of Theorem 3 is that if every derivation of a separable liminary C^* -algebra is inner then each quotient of this C*-algebra has this property.

2. THEOREM. Let A be a separable C*-algebra. If A has a primitive quotient without unit then A has outer derivations.

PROOF. By [1] A has a commutative approximate unit, contained, say, in a commutative sub- C^* -algebra B of A. Let t be a primitive ideal of A such that A/t does not have a unit. Then because B is separable and (B + t)/t does not have a unit, there is a bounded sequence (x_n) of elements of B whose images in (B + t)/t have norm one, and whose supports in the spectrum of B are compact, mutually disjoint, and, except for finitely many, disjoint from each fixed compact.

Claim. The inner derivation of A defined by $\sum_{n=1}^{k} x_{2n}$, k = 1, 2, \cdots , converges simply to an outer derivation.

To show convergence on all of A it is enough to show convergence on a dense subset of A. The set of $x \in A$ such that yx = xy = x for some $y \in B$ of compact support in the spectrum of B is dense in A, and for each such x, $x_n x = x x_n = 0$ for all but finitely many n.

Received by the editors July 12, 1972 and, in revised form, October 22, 1972. AMS (MOS) subject classifications (1970). Primary 46L05.

¹Added in proof: It has been shown by Akemann, Elliott, Pedersen and Tomiyama (Derivations and multipliers of C*-algebras, preprint) that in this theorem "liminary" can be replaced by "postliminary".

²Added in proof: This implication has now been established for an arbitrary separable C* -algebra (op. cit.).