ON MORE RESTRICTED PARTITIONS

M.S. CHEEMA ${ }^{1}$

1. Introduction. Recently Gupta [2] studied the function $g(n, m, h, k)$ which enumerates the number of partitions of n into exactly k summands each less than or equal to m and in which the number of distinct summands is exactly h. Earlier Cheema and Haskell [1] studied $p(n, r, m, k)$, the number of partitions of n into r summands such that each summand is less than or equal to k and greater than or equal to m. In this article it is shown that the above results can be generalized to study $g(n, l, m, h, k)$ (and other related functions) which enumerates the number of partitions of n into exactly k summands each less than or equal to m and greater than or equal to l in which the number of distinct summands is exactly h.
2. $g(n, l, m, h, k)$ is the coefficient of $x^{n} z^{k} t^{h}$ in

$$
\begin{equation*}
\prod_{i=l}^{m}\left(1+\frac{x^{i} z}{1-x^{i} z} t\right) \quad \text { i.e., in } \prod_{i=l}^{m}\left(\frac{1+x^{i} z(t-1)}{1-x^{i} z}\right)=\frac{f(t)}{f(0)} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
f(t)= & \prod_{i=l}^{m}\left(1+x^{i} z(t-1)\right) \\
= & 1+\left[\begin{array}{c}
m-l+1 \\
1
\end{array}\right] x^{l-1} z(t-1) \\
& +\left[\begin{array}{c}
m-l+1 \\
2
\end{array}\right] x^{2(l-1)} z^{2}(t-1)^{2} \\
& +\cdots+\left[\begin{array}{c}
m-l+1 \\
m-l+1
\end{array}\right] x^{(m-l+1)(l-1)} z^{m-l+1}(t-1)^{m-l+1}
\end{aligned}
$$

where

$$
\left[\begin{array}{c}
m \tag{2.3}\\
i
\end{array}\right]=\frac{\left(1-x^{m}\right)\left(1-x^{m-1}\right) \cdots\left(1-x^{m-i+1}\right)}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{i}\right)} x^{i(i+1) / 2}
$$

Received by the editors June 28, 1971 and, in revised form, January 28, 1972.
AMS (MOS) subject classifications (1970). Primary 10A45; Secondary 10A45.
${ }^{1}$ Supported in part by N.S.F. GP 12716.

