SOLUTION OF THE ALMOST COMPLEX SPHERES PROBLEM USING K-THEORY
 ELDON C. BOES

1. Introduction. Let $F(n)$ denote $S O(2 n) / U(n)$. We shall abbreviate $K_{C}{ }^{*}(X)$ to simply $K(X)$. Finally, $K(X ; Q)$ represents $K(X) \otimes Q$, where Q is the field of rational numbers.

The two results of this paper are the following:
1.1. A description of $K(F(n) ; Q)$.
1.2. A new proof that the only almost complex spheres are S^{2} and S^{6}.

The first proof that the only almost complex spheres are S^{2} and S^{6} was given by Borel and Serre in [5] ; their proof used the Steenrod reduced power operations. Our proof uses 1.1 and the Chern character.

The contents of this paper are as follows: $\S 2$ contains background material. In $\S 3$ we calculate $K(F(n) ; Q)$. We also indicate a method for calculating $K(F(n)) . \S 4$ is devoted to 1.2.

This material constitutes part of the author's doctoral thesis [2]. I wish to thank Professor Albert Lundell for his advice.
2. Background. A complete reference for this section is [8].

A $2 n$-dimensional real manifold M is almost complex if its tangent sphere bundle

$$
S^{2 n-1} \rightarrow T(M) \rightarrow M
$$

with structural group $O(2 n)$ is equivalent in $O(2 n)$ to a bundle with structural group $U(n)$. This happens if and only if the associated bundle with fibre $F(n)$ has a cross section.

For the sphere $S^{2 n}$, the tangent sphere bundle is

$$
\mathrm{S}^{2 n-1} \rightarrow \mathrm{SO}(2 n+1) / \mathrm{SO}(2 n-1) \rightarrow \mathrm{S}^{2 n}
$$

The associated principal bundle is

$$
\mathrm{SO}(2 n) \rightarrow \mathrm{SO}(2 n+1) \rightarrow \mathrm{S}^{2 n}
$$

and, since $S O(2 n+1) / U(n) \approx F(n+1)$, the associated bundle with

[^0]
[^0]: Received by the editors February 9, 1971 and, in revised form, May 6, 1971.
 AMS (MOS) subject classifications (1970). Primary 53C15, 55F50, 55G40; Secondary 55B15, 55F05, 55F10.

