DUAL AND BIDUAL LOCALLY CONVEX SPACES¹

G. CROFTS

ABSTRACT. A characterization of quasi-barreled spaces which are strong duals of quasi *M*-barreled spaces is given. Sufficient conditions are given for a quasi-barreled space E to be the strong bidual of a closed subspace F of E, when F has the inherited topology. These results are applied to spaces of continuous linear maps and to spaces of matrix maps between sequence spaces.

When is a locally convex space the strong dual (bidual) of a locally convex space? Many authors have addressed themselves to the first of these questions, see [6] for a partial bibliography. An answer to the second question, in the special case of Banach spaces, has been given by Shapiro, Shields, and Taylor in a paper yet unpublished. Their theorem reads:

THEOREM A. Let F be a closed subspace of a Banach space E. The inclusion map of F into E can be extended to an isometry of F'' onto E if and only if there is a locally convex topology \mathcal{D} on E satisfying

- (i) the restriction of \mathcal{T} to F is weaker than the norm topology on F,
- (ii) the unit ball of F is \Im -dense in the unit ball of E,
- (iii) no proper closed subspace of F is \mathcal{T} -dense in E, and
- (iv) the unit ball of E is \mathcal{I} -compact.

In this paper we obtain results which generalize this theorem to general locally convex spaces. Our work also gives another answer to the first question listed above. In \$3 we apply our results to spaces of matrix maps between sequence spaces.

We follow the terminology of Köthe [5] throughout. Hence if $E[\tau]$ is a locally convex space we will denote by $(E[\tau])'$ the topological dual of $E[\tau]$. Also, if a space is locally convex we mean it is also Hausdorff. We shall abbreviate locally convex space by l.c. space. We recall that $(E[\tau])'[\mathcal{D}_b(E)]$ is the strong dual of $E[\tau]$ and the strong bidual of $E[\tau]$ is the strong dual of the strong dual of $E[\tau]$. If F is a subspace of a l.c. space $E[\tau]$, the topology induced on F by τ will be denoted by τ_i . Also, if $\langle E_1, E_2 \rangle$ is a dual system of vector spaces, then $\mathcal{D}_s(E_2, E_1), \mathcal{D}_k(E_2, E_1)$, and $\mathcal{D}_b(E_2, E_1)$ denote the weak, Mackey, and strong topology on E_1 from E_2 respectively.

Received by the editors March 8, 1971.

AMS 1969 subject classifications. Primary 46A45, 46A05, 46A20.

¹This work was supported by NSF Grant GU 2648 at Michigan State University.

Copyright © 1972 Rocky Mountain Mathematics Consortium