PRESERVATION OF COPRODUCTS BY $\operatorname{Hom}_{R}(M,-)$

TOM HEAD

The functor $\operatorname{Hom}_{R}(M,-)$ from the category of left R-modules into the category of abelian groups always preserves products but preserves coproducts only in special cases. An obvious sufficient condition for the preservation of coproducts is that M be finitely generated. In several significant special cases (for example, when M is projective or R is left Noetherian) finite generation is also necessary. H. Bass has stated [1, p. 54] that finite generation is not in general necessary for the preservation of coproducts and he has given a necessary and sufficient condition which we state in slightly altered form: $\operatorname{Hom}_{R}(M,-)$ preserves coproducts if and only if M is not the union of any nest of proper submodules of the form $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{i} \subseteq \cdots{ }_{(i}$ a positive integer). In this note we present a simple example of a nonfinitely generated module M for which $\operatorname{Hom}_{R}(M,-)$ preserves coproducts and we discuss the effect of some additional hypotheses on coproduct preservation.

We make four assumptions that hold throughout this note: R is a ring with identity. All modules are unitary left R-modules. A map is an R-homomorphism. N is the set of positive integers.
Theorem. There exists a Boolean ring \boldsymbol{R} which has cardinal $\boldsymbol{\aleph}_{1}$ and contains a maximal ideal \mathbf{M} which is neither finitely nor countably generated but for which $\operatorname{Hom}_{\boldsymbol{R}}(\boldsymbol{M},-)$ preserves coproducts.

Proof. For each ordinal number $\boldsymbol{\beta}$ let $\mathrm{S}_{\boldsymbol{\beta}}$ be the set of all ordinals α such that $\alpha<\beta$. Let Ω be the least ordinal of uncountable cardinal. The validity of our example will be seen to stem from the following fact: A subset X of S_{Ω} is cofinal (i.e., for every $\alpha \in S_{n}$ there is a $\beta \in X$ such that $\alpha<\beta$) if and only if it is uncountable.

Let \boldsymbol{R} be the subring of the ring of all subsets of S_{2} that is generated by the set of all 'segments' $\left\{S_{\alpha} \mid \alpha \leqq \Omega\right\}$. Then \boldsymbol{R} is a Boolean ring with identity S_{Ω} and has cardinal \aleph_{1}. Let \boldsymbol{M} be the ideal of \boldsymbol{R} generated by the set of all 'short' segments $\left\{\mathrm{S}_{\alpha} \mid \alpha<\Omega\right\}$. Then \boldsymbol{M} is proper and maximal. Let $A_{i} \in \boldsymbol{M}(i \in N)$. For each i in N we have an $\boldsymbol{\alpha}(i)<\Omega$ such that $A_{i} \subseteq \mathrm{~S}_{\alpha(i)}$. Since $\{\alpha(i) \mid i \in N\}$ is countable (= not cofinal),

[^0]
[^0]: Received by the editors November 23, 1970.
 AMS 1970 subject classifications. Primary 16A62, 13C99, 06A40; Secondary 16A64, 16A46, 16A50.

