INVERSES, LOGARITHMS, AND IDEMPOTENTS IN $M(G)^{1}$

JOSEPH L. TAYLOR²

Let M(R) denote the measure algebra on the line considered as a Banach algebra under convolution. In [16] we proved that if $\mu \in M(R)$ and μ is invertible, then μ has a factorization $\mu =$ $\eta^k * \delta_x * \exp(\omega)$, where $k \in \mathbb{Z}, x \in \mathbb{R}, \omega \in M(R)$, and η can be chosen to be any measure in $L^1(R) + C\delta_0$ whose Fourier transform is nonvanishing and has winding number one about zero. This result implies that the group $M(R)^{-1}/\exp(M(R))$ is isomorphic to $\mathbb{Z} \oplus \mathbb{R}$. Since the numbers k and x in the above factorization can be explicitly determined from μ , this result completely characterizes the invertible measures in M(R) which have logarithms in M(R).

The above result is a special case of a general factorization theorem proved in [16] for any commutative convolution measure algebra — in particular, for all algebras M(G) for G a locally compact abelian (l.c.a.) group or M(S) for S a locally compact abelian topological semigroup. This theorem is proved using the Arens-Royden theorem [1], [8], and a result in [16] which characterizes the cohomology groups of the maximal ideal space of any measure algebra. Another consequence of this result is a new proof of Cohen's idempotent theorem [3].

In [17] using some of the same techniques we proved that if a measure $\mu \in M(G)$ is invertible in M(G) then its inverse must lie in a certain "small" subalgebra of M(G) containing μ . This greatly simplifies the problem of determining the spectrum of an element of M(G).

Unfortunately, the above results rely heavily on the specialized machinery developed in [11], [12], [13], and [14] for the study of convolution measure algebras. Also, the proof of the factorization theorem in [16] uses a considerable amount of sheaf theory and algebraic topology. Thus, the student of harmonic analysis who wishes to understand these results is faced with a discouraging amount of machinery to wade through.

Received by the editors October 13, 1970.

AMS 1970 subject classifications. Primary 43A10, 43A05.

¹Research partially supported by the United States Air Force, Air Force Office of Scientific Research, under AF-AFOSR 1313-67.

²The author currently holds an Alfred P. Sloan Foundation fellowship.

Copyright © 1972 Rocky Mountain Mathematics Consortium