PRINCIPAL SUBMATRICES. VIII. PRINCIPAL SECTIONS OF A PAIR OF FORMS ${ }^{1}$

R. C. THOMPSON

Abstract

Let A, C be n-square Hermitian matrices, with C positive definite. Let A_{i}, C_{i} denote the principal submatrices obtained by deleting row and column i. In this paper new links are obtained between the roots of the determinantal equations $\operatorname{det}(\lambda C-A)=0, \operatorname{det}\left(\lambda C_{i}-A_{i}\right)=0, i=1, \cdots, n$.

Let A be an n-square Hermitian matrix. Let $A(i \mid i)$ denote the principal submatrix of A obtained by deleting from A both row i and column i. In certain earlier papers in this series, links between the roots of

$$
\begin{equation*}
\operatorname{det}\left(\lambda I_{n}-A\right)=0 \tag{1}
\end{equation*}
$$

(the eigenvalues of A) and the roots of

$$
\begin{equation*}
\operatorname{det}\left(\lambda I_{n-1}-A(i \mid i)\right)=0, \quad i=1,2, \cdots, n, \tag{2}
\end{equation*}
$$

(the eigenvalues of $A(i \mid i)$) have been studied. It is of course true that, for each fixed i, the roots of (2) interlace the roots of (1). This well-known fact goes back to Cauchy, and for this reason these interlacing inequalities are often called the Cauchy inequalities.

Let C be an n-square positive definite Hermitian matrix. In this paper we study the roots of the equation

$$
\begin{equation*}
\operatorname{det}(\lambda C-A)=0 \tag{3}
\end{equation*}
$$

and their links to the roots of all of the equations

$$
\begin{equation*}
\operatorname{det}(\lambda C(i \mid i)-A(i \mid i))=0, \quad i=1,2, \cdots, n . \tag{4}
\end{equation*}
$$

The equation (3) arises when one attempts a simultaneous diagonalization of a pair of quadratic forms having coefficient matrices C and A. (The possibility of this simultaneous diagonalization is important in applied mathematics, especially in mechanics - see [11].) Suppressing the same variable in each of these forms, the correspond-

[^0]
[^0]: Received by the editors July 20, 1970.
 AMS 1970 subject classifications. Primary 15A39, 15A42, 15A63.
 Key words and phrases. Linear algebra, principal submatrix, eigenvalue inequalities.
 ${ }^{1}$ The preparation of this paper was supported in part by the U.S. Air Force Office of Scientific Research, under Grant 698-67.

