LAMBERT SERIES, FALSE THETA FUNCTIONS, AND PARTITIONS

GEORGE E. ANDREWS 1

1. **Introduction.** One of the recent important results in the theory of partitions is the following theorem due to B. Gordon [5].

THEOREM. Let $A_{k,a}(N)$ denote the number of partitions of N into parts $\not\equiv 0$, $\pm a \pmod{2k+1}$. Let $B_{k,a}(N)$ denote the number of partitions of N of the form $N = \sum_{i=1}^{\infty} f_i i$ (f_i denotes the number of times the summand i appears in the partition) where $f_1 \leq a-1$ and $f_i + f_{i+1} \leq k-1$. Then $A_{k,a}(N) = B_{k,a}(N)$.

This theorem reduces to the Rogers-Ramanujan identities when k = 2.

In this paper we shall study a partition function $W_{k,i}(n; N)$ which is somewhat similar to $B_{k,i}(N)$. $W_{k,i}(n; N)$ denotes the number of partitions of N of the form $N = \sum_{i=1}^n f_i i$, with $f_1 = i$, $f_j \leq k-1$, and $f_j + f_{j+1} = k$ or k+1 for $1 \leq j \leq n-1$. We let $w_{k,i}(n;q) = 1 + \sum_{N=1}^{\infty} W_{k,i}(n;N)q^N$. Our first result relates $w_{k,i}(n;q)$ to certain Lambert series.

Theorem 1. For |q| < 1,

$$1 - \sum_{n=1}^{\infty} q^{(2k-1)n^2/2 + n/2 - (k-i)n} \frac{(1 - q^{2n(k-i)})}{1 + q^n}$$

$$=1 + \sum_{n=1}^{\infty} \frac{(-1)^n w_{k,i}(n;q)}{(1+q)(1+q^2)\cdots(1+q^n)}.$$

When i = k - 1, we see that the left-hand series in Theorem 1 reduces to a false theta series. From Theorem 1 it is possible to prove results on partitions which we shall examine in §3.

2. **Proof of Theorem 1.** We define the function $f_{k,i}(x)$ as follows:

$$(2.1) f_{k,i}(x) = \sum_{n=0}^{\infty} x^{kn} q^{(2k-1)n^2/2 + n/2 - in} (1 - x^i q^{2ni}) \frac{(-1)_n}{(-xq)_n},$$

Received by the editors June 19, 1970.

AMS 1969 subject classifications. Primary 1048; Secondary 3304, 3319, 3320. Partially supported by NSF Grant GP-9660.