THE IDEAL TRANSFORM IN A GENERALIZED KRULL DOMAIN

ELBERT M. PIRTLE
Introduction. Let R be a commutative integral domain with identity and let L denote the quotient field of R. R is called a generalized Krull domain [5] if there is a family F of rank one valuation on L satisfying the following, which we label as (E).

Each $v \in F$ has rank one.
$R=\bigcap\left\{R_{v} \mid v \in F\right\}$.
$R_{v}=R_{P(v)}, v \in F$.
F is of finite character [5].
In this case, F is called the family of essential valuations of R.
In [6], Nagata defined the transform $T(A)$ of an ideal A of R as follows: $T(A)=\bigcup_{n=1}^{\infty} R: A^{n}$, where $R: B=\{x \in L \mid x B \subseteq R\}$ for any ideal B of R. Nagata [6] characterized the transform of an ideal A when R is a Krull domain and showed that when R is Krull, the transform of any ideal of R is the transform of a finitely generated ideal. Brewer in [1] characterized the transform of any finitely generated ideal when R is an arbitrary integral domain.

In §l of this paper, we obtain a characterization of the transform of an arbitrary ideal of R, when R is a generalized Krull domain, that generalizes Nagata's and Brewer's results. This characterization provides the basis for a "transform algebra." §2 contains two examples to show how the results of $\S 1$ fail when the finite character assumption on F is dropped.

1. Let R be a generalized Krull domain with quotient field L and family F of essential valuations. For any nonzero ideal A of R and any $v \in F$, put $v(A)=\inf \{v(a) \mid a \in A\}$. Since F is of finite character, it follows that $v(A) \neq 0$ for only finitely many $v \in F$. We let $F_{A}=\{v \in F \mid v(A) \neq 0\}$.

Theorem 1.1. Let A be any nonzero ideal of R. Then $T(A)=$ $\bigcap\left\{R_{w} \mid w(A)=0\right\}$.

Proof. Let $x \in T(A)$. Then $x A^{n} \subseteq R$ for some n. So for $w \in F-F_{A}$

[^0]
[^0]: Received by the eidtors April 6, 1970 and, in revised form, June 18, 1970.
 AMS 1970 subject classifications. Primary 13F05, 13G05, 13A15; Secondary 13B25, 13B20.

