ON THE HURWITZ ZETA-FUNCTION

BRUCE C. BERNDT

1. Introduction. Briggs and Chowla [2] and Hardy [3] calculated the coefficients of the Laurent expansion of the Riemann zeta-function $\zeta(s)$ about $s=1$. Kluyver [4] found a certain infinite series representation for these coefficients. In another paper [1] Briggs found estimates for the coefficients. These estimates were improved by Lammel [6]. Using these estimates, Lammel also gave a simple proof of the fact that $\zeta(s)$ has no zeros on $|s-1| \leqq 1$.

Using the same technique as in [2] and [6], we derive expressions for the coefficients of the Laurent expansion of the generalized or Hurwitz zeta-function $\zeta(s, a), 0<a \leqq 1$, about $s=1$. A similar formula for these coefficients has been given by Wilton [11]. We then obtain estimates for these coefficients. Our technique here is somewhat simpler than in [6], and as a special case we obtain improved estimates for the Laurent coefficients of $\zeta(s)$. Next, we use our estimates to show that $\zeta(s, a)-a^{-s}$ has no zeros on $|s-1| \leqq 1$. We conclude by indicating a new, simple proof of a representation formula for $\zeta(s, a)$ that was first discovered by Hurwitz.
2. Calculation of the Laurent coefficients. In the sequel we shall need a slightly different version of the Euler-Maclaurin summation formula from what is usually given. Let $f \in C^{n}$ on $[\alpha, m]$, where m is an integer. Then,

$$
\begin{align*}
\sum_{\alpha<k \leqq m} f(k)= & \int_{\alpha}^{m} f(x) d x+\sum_{k=1}^{n}(-1)^{k} \frac{B_{k}}{k!} f^{(k-1)}(m) \tag{2.1}\\
& +\sum_{k=1}^{n}(-1)^{k+1} P_{k}(\alpha) f^{(k-1)}(\alpha)+R_{n},
\end{align*}
$$

where

$$
R_{n}=(-1)^{n+1} \int_{\alpha}^{m} P_{n}(x) f^{(n)}(x) d x
$$

Here, $B_{k}, \quad 1 \leqq k \leqq n$, denotes the k th Bernoulli number, and $P_{k}(x)$,

Received by the editors February 20, 1970 and, in revised form, November 2, 1970.

AMS 1969 subject classifications. Primary 1041; Secondary 1040.
Copyright © 1972 Rocky Mountain Mathematics Consortium

