ON THE HURWITZ ZETA-FUNCTION

BRUCE C. BERNDT

1. Introduction. Briggs and Chowla [2] and Hardy [3] calculated the coefficients of the Laurent expansion of the Riemann zeta-function $\zeta(s)$ about s = 1. Kluyver [4] found a certain infinite series representation for these coefficients. In another paper [1] Briggs found estimates for the coefficients. These estimates were improved by Lammel [6]. Using these estimates, Lammel also gave a simple proof of the fact that $\zeta(s)$ has no zeros on $|s - 1| \leq 1$.

Using the same technique as in [2] and [6], we derive expressions for the coefficients of the Laurent expansion of the generalized or Hurwitz zeta-function $\zeta(s, a)$, $0 < a \leq 1$, about s = 1. A similar formula for these coefficients has been given by Wilton [11]. We then obtain estimates for these coefficients. Our technique here is somewhat simpler than in [6], and as a special case we obtain improved estimates for the Laurent coefficients of $\zeta(s)$. Next, we use our estimates to show that $\zeta(s, a) - a^{-s}$ has no zeros on $|s - 1| \leq 1$. We conclude by indicating a new, simple proof of a representation formula for $\zeta(s, a)$ that was first discovered by Hurwitz.

2. Calculation of the Laurent coefficients. In the sequel we shall need a slightly different version of the Euler-Maclaurin summation formula from what is usually given. Let $f \in C^n$ on $[\alpha, m]$, where m is an integer. Then,

(2.1)
$$\sum_{\alpha < k \le m} f(k) = \int_{\alpha}^{m} f(x) dx + \sum_{k=1}^{n} (-1)^{k} \frac{B_{k}}{k!} f^{(k-1)}(m) + \sum_{k=1}^{n} (-1)^{k+1} P_{k}(\alpha) f^{(k-1)}(\alpha) + R_{n},$$

where

$$R_n = (-1)^{n+1} \int_{\alpha}^{m} P_n(x) f^{(n)}(x) dx.$$

Here, B_k , $1 \leq k \leq n$, denotes the kth Bernoulli number, and $P_k(x)$,

Copyright © 1972 Rocky Mountain Mathematics Consortium

Received by the editors February 20, 1970 and, in revised form, November 2, 1970.

AMS 1969 subject classifications. Primary 1041; Secondary 1040.