SOME COUNTEREXAMPLES INVOLVING SELFADJOINT OPERATORS

JEROME A. GOLDSTEIN¹

1. Introduction. We present several counterexamples related to the convergence, (generalized) addition, and (generalized) commutation of (unbounded) skew-adjoint operators.

2. Convergence of skew-adjoint operators. Let A_n $(n = 0, 1, 2, \cdots)$ be a skew-adjoint operator on a Hilbert space \mathcal{H} . We say that A_n converges to A_0 and we write $\lim_{n\to\infty} A_n = A_0$ iff

(1)
$$\lim_{n \to \infty} (\lambda I - A_n)^{-1} f = (\lambda I - A_0)^{-1} f$$

for all $f \in \mathcal{A}$ and all $\lambda \in \mathbb{R} \setminus \{0\}$ (**R** is the real line and *I* is the identity on \mathcal{A}). This is equivalent to

(2)
$$\lim_{n \to \infty} U_n(t) f = U_0(t) f$$

for all $t \in \mathbf{R}$ and all $f \in \mathcal{A}$ where $U_n = \{U_n(t); t \in \mathbf{R}\}$ is the (C_0) unitary group generated by A_n , $n = 0, 1, 2, \cdots$. The above result is an immediate consequence of Stone's theorem and the Trotter-Neveu-Kato approximation theorem for (C_0) semigroups of operators (cf. for instance Goldstein [5], Kato [6], Yosida [9]).

A useful sufficient condition for (1) to hold is given by the following well-known simple result.

LEMMA 1. Let A_n be skew-adjoint operators on \mathcal{A} , $n = 0, 1, 2, \cdots$. Then (1) holds for all $f \in \mathcal{A}$ and all $\lambda \in \mathbb{R} \setminus \{0\}$ if there is a subspace $\mathfrak{D} \subset \mathfrak{D} (A_0)$ (= the domain of A_0) such that

(i) A_0 is the closure of $A_0 \mid \mathcal{D}$,

(ii) for all $f \in \mathcal{D}$, $f \in \mathcal{D}(A_n)$ for *n* sufficiently large and $\lim_{n\to\infty} A_n f = A_0 f$.

Our first example shows that the sufficient condition given in Lemma 1 is far from being necessary.

EXAMPLE 1. There is a sequence U_n $(n = 0, 1, 2, \cdots)$ of (C_0)

Copyright © 1972 Rocky Mountain Mathematics Consortium

Received by the editors October 26, 1970.

AMS 1970 subject classifications. Primary 47C99, 47D10, 47B25, 47B47; Secondary 22A99.

¹Supported by National Science Foundation grant GP-19824.