A CLOSURE PROPERTY OF REGRESSIVE ISOLS MATTHEW J. HASSETT¹

0. Introduction. Let ϵ^* , ϵ , Λ , Λ_R and Λ^* denote the collections of all integers, nonnegative integers, isols, regressive isols, and isolic integers respectively. Let $f(x_1, \dots, x_n)$ be a recursive function, and let f_{Λ} denote the canonical extension of f to a mapping from Λ^n into Λ^* . Let Δ be any subcollection of Λ . We say that Δ is closed under f if $f_{\Lambda}(\Delta^n) \subseteq \Delta$. A. Nerode proved in [12] that Λ is closed under f if and only if f is almost recursive combinatorial. In [2], J. Barback showed that if f is a recursive function of one variable, Λ_B is closed under f if and only if f is eventually increasing. The purpose of this paper is to characterize the class of recursive functions of two variables mapping Λ_{R}^{2} into Λ_{R} . The class obtained is surprisingly limited; it consists primarily of functions of the form min (f(x), g(y))where min (x, y) is the usual minimum function and f(x) and g(y)are eventually increasing and recursive. A precise statement of the main result requires the following two definitions. f(x, y) will be called *flat* if there is a (recursive) function g(x, y) such that g(x, y) = 0for all but finitely many pairs $(x, y) \in \epsilon^2$ and $f(x, y) = \sum_{i=0}^{x} \sum_{j=0}^{y} g(i, j)$ for all $(x, y) \in \epsilon^2$. f(x, y) will be called *reducible to the case of a* single variable if (i) there exist eventually increasing recursive functions $f_i(y)$, $i = 0, \dots, m$, such that $f(x, y) = f_x(y)$ for $x \leq m$ and $f(x, y) = f_m(y)$ for x > m, or (ii) condition (i) holds with the roles of x and y interchanged. The main result is the following:

 Λ_R is closed under a recursive function f(x, y) if and only if there is an $n \in \epsilon$ such that:

(1) For $i \leq n$, f(i, y) is an eventually increasing function of y and f(x, i) is an eventually increasing function of x,

(2) $f(x + n, y + n) = m(x, y) + c_1(x, y) - c_2(x, y)$ for $x, y \in \epsilon$, where c_1 and c_2 are flat recursive functions and m(x, y) is either (i) reducible to the case of a single variable or (ii) of the form min (g(x), h(y)), where g(x) and h(y) are eventually increasing recursive functions of one variable.

Functions mapping Λ_R^2 into Λ_R have a natural use as Skolem func-

Received by the editors August 4, 1969.

AMS 1970 subject classifications. Primary 02F40; Secondary 02F20.

¹The main results of this paper are part of a doctoral thesis written under the direction of Professor J. C. E. Dekker at Rutgers — The State University.

Copyright © 1972 Rocky Mountain Mathematics Consortium