LARGE ABELIAN SUBGROUPS OF SOME INFINITE GROUPS VANCE FABER

ABSTRACT. A generalization of the following conjecture of W. R. Scott is proved. If $(H_{\alpha})_{\alpha \leq \delta}$ is a well-ordered descending chain of subgroups of a group with the property that $H_{\beta} = \bigcap_{\alpha < \beta} H_{\alpha}$ for limit ordinals, then $[H_0: H_{\delta}] \leq \prod_{\alpha < \delta} [H_{\alpha}: H_{\alpha+1}]$. Using this, we show that the members of certain classes of infinite groups are guaranteed to have large abelian subgroups.

1. Introduction. Following Kurosh [5, p. 171], a totally ordered system \mathcal{U} of subgroups of a group is said to be complete if for an arbitrary subsystem of \mathcal{U} , the unions and the intersections of the subgroups forming the subsystem belong to \mathcal{U} . W. R. Scott [8, p. 21] has conjectured that, if $(H_{\alpha})_{\alpha \leq \delta}$ is a well-ordered descending complete system of subgroups of a group H_0 , then

(1)
$$[H_0:H_{\delta}] \leq \prod_{\alpha < \delta} [H_{\alpha}:H_{\alpha+1}].$$

In a private communication, Scott has shown that this is indeed true for $\delta = \omega$, the first infinite ordinal, and has stated that under these same conditions both he and, independently, A. Kruse have proved that

$$[H_0:H_{\delta}] \leq \left[\prod_{\alpha < \delta} [H_{\alpha}:H_{\alpha+1}]\right]^{|\delta|}.$$

In §3 we shall establish a generalized form of Scott's conjecture from which the latter can be deduced. In addition, we shall find a lower bound for $[H_0: H_{\delta}]$ which will be useful in §4.

If *m* is a cardinal number, we define $\exp m = \exp^{1}m = 2^{m}$. Inductively, if *n* is any positive integer, we define $\exp^{n+1}m = \exp \exp^{n}m$. In §4 we utilize equation (1) to investigate the existence of large abelian subgroups of certain infinite groups. For example, C. R. Kulatilaka has shown [4, p. 241] that every infinite SI^* -group G

Copyright © Rocky Mountain Mathematics Consortium

Received by the editors February 20, 1970 and, in revised form, August 20, 1970.

AMS 1969 subject classifications. Primary 2018, 2056, 2058; Secondary 2030, 2037.

Key words and phrases. Abelian subgroup, infinite group, well-ordered chain of subgroups, ordered system of subgroups, invariant series, FC-series, SI^* -group, Fitting subgroup, Baer radical, Gruenberg radical, generalized continuum hypothesis, locally nilpotent, FC-nilpotent, ZA-group.