A NOTE ON THE INTERSECTION OF THE POWERS OF THE JACOBSON RADICAL
 MAX D. LARSEN AND AHMAD MIRBAGHERI

1. Introduction and preliminaries. All rings will be assumed to have identity. If R is a ring, $J=J(R)$ will denote its Jacobson radical. The purpose of this note is to establish conditions on R such that $\bigcap_{i=1}^{\infty} J^{i}=0$. In particular, we show that if R is a right Noetherian J-prime ring such that every ideal of R is a principal right ideal, and in addition, J is a principal left ideal, then J is the nilpotent radical of R or $\bigcap_{i=1}^{\infty} J^{i}=0$. Further, we show that $\bigcap_{i=1}^{\infty} J^{i}=0$ if R is a right Noetherian ring, J is a principal right ideal, and $\bigcap_{i=1}^{\infty} J^{i}$ is a finitely generated left ideal of R. The methods of J. C. Robson [5] are used throughout, and Theorems 3.5 and 5.3 of Robson's paper are generalized.

A ring is called an ipri-ring (ipli-ring) if every ideal is a principal right (left) ideal [5, p. 127]. Condition (α) is said to hold in R if $a b$ being regular in R is equivalent to both a and b being regular in R. Combining [1, Theorems 4.1 and 4.4, pp. 212-213] and [4, Corollary $2.6, \mathrm{p} .603$] one sees that if R is a semiprime right Noetherian ring, then (α) holds in R. A ring R is said to be J-prime (J-simple) if R / J is a prime (simple) ring. The nilpotent radical of a ring is denoted by W and W-simple is defined similarly. The symbol \subset will denote proper containment.

A result important to our work is the following lemma [3, p. 200]:
Lemma 1.1. For any ring R, if G is a nonzero ideal of R finitely generated as a right (left) ideal of R and $G \subseteq J=J(R)$, then $G J \subset G(J G \subset G)$.

Lemma 1.2. Let R be a right Noetherian J-prime ipri-ring. If T is an ideal of R such that $T \nsubseteq J$, then $J \subset T$.

Proof. Let $B=T+J=b R$ and $J=a R$. Assume $J \subset B$. Then the image of B in R / J is a nonzero ideal and hence the image of b is regular since R / J is a prime right Noetherian ring [5]. Since $J \subset b R$, we have $J=b J$. Hence $J \subset T+J^{2}$ and there exist $t \in T$ and $r \in R$ such that $a(1-a r)=t$. But $1-a r$ is a unit in R so $a \in T$. Thus $J \subset T$.

Received by the editors October 17, 1969, and, in revised form, May 23, 1970.
AMS 1969 subject classifications. Primary 1620; Secondary 1625.

