A NOTE ON THE INTERSECTION OF THE POWERS OF THE JACOBSON RADICAL

MAX D. LARSEN AND AHMAD MIRBAGHERI

1. Introduction and preliminaries. All rings will be assumed to have identity. If R is a ring, J = J(R) will denote its Jacobson radical. The purpose of this note is to establish conditions on R such that $\bigcap_{i=1}^{\infty} J^i = 0$. In particular, we show that if R is a right Noetherian J-prime ring such that every ideal of R is a principal right ideal, and in addition, J is a principal left ideal, then J is the nilpotent radical of R or $\bigcap_{i=1}^{\infty} J^i = 0$. Further, we show that $\bigcap_{i=1}^{\infty} J^i = 0$ if R is a right Noetherian ring, J is a principal right ideal, and $\bigcap_{i=1}^{\infty} J^i$ is a finitely generated left ideal of R. The methods of J. C. Robson [5] are used throughout, and Theorems 3.5 and 5.3 of Robson's paper are generalized.

A ring is called an *ipri-ring* (*ipli-ring*) if every ideal is a principal right (left) ideal [5, p. 127]. Condition (α) is said to hold in R if ab being regular in R is equivalent to both a and b being regular in R. Combining [1, Theorems 4.1 and 4.4, pp. 212-213] and [4, Corollary 2.6, p. 603] one sees that if R is a semiprime right Noetherian ring, then (α) holds in R. A ring R is said to be J-prime (J-simple) if R/J is a prime (simple) ring. The nilpotent radical of a ring is denoted by W and W-simple is defined similarly. The symbol \subseteq will denote proper containment.

A result important to our work is the following lemma [3, p. 200]:

LEMMA 1.1. For any ring R, if G is a nonzero ideal of R finitely generated as a right (left) ideal of R and $G \subseteq J = J(R)$, then $GJ \subseteq G$ ($JG \subseteq G$).

Lemma 1.2. Let R be a right Noetherian J-prime ipri-ring. If T is an ideal of R such that $T \subseteq J$, then $J \subseteq T$.

PROOF. Let B = T + J = bR and J = aR. Assume $J \subset B$. Then the image of B in R/J is a nonzero ideal and hence the image of b is regular since R/J is a prime right Noetherian ring [5]. Since $J \subset bR$, we have J = bJ. Hence $J \subset T + J^2$ and there exist $t \in T$ and $t \in R$ such that $t \in R$ such that

Received by the editors October 17, 1969, and, in revised form, May 23, 1970.

AMS 1969 subject classifications. Primary 1620; Secondary 1625.