A METRIC FOR WEAK CONVERGENCE OF DISTRIBUTION FUNCTIONS¹

DAVID A. SIBLEY

Let Δ denote the set of distribution functions, that is, left-continuous nondecreasing functions from the real line into [0, 1]. The set of distribution functions of random variables (functions in Δ with sup 1 and inf 0) will be denoted by Δ_{rv} . The following facts are well known (see, **e.g.,[2]).**

1. The space Δ is sequentially compact with respect to weak convergence. That is, any sequence of functions in Δ has a weakly convergent subsequence (Helly's First Theorem). However, $\Delta_{\rm rv}$ does not have this property.

2. The set Δ is a metric space under the Lévy metric L defined for any F, G in Δ by

$$
L(F, G) = \inf\{h; F(x - h) - h \leq G(x) \leq F(x + h) + h \text{ for all } x\}.
$$

3. If (F_n) is a sequence in Δ_{rv} and *F* is also in Δ_{rv} then F_n converges weakly to F iff $L(F_n, F) \to 0$. Thus for sequences in $\Delta_{\rm rv}$ whose limit is also in $\Delta_{\rm rv}$ weak convergence and convergence in the L-metric are equivalent. The hypothesis that the limit belong to $\Delta_{\rm rv}$ is necessary, for there are sequences in Δ_{rv} which converge weakly to a limit in Δ but do not converge in the Lévy metric. (One such sequence is discussed in this paper.)

Statement 3 shows that the relationship between weak convergence (in the sense of Helly's First Theorem) and convergence in the metric L is unsatisfactory. This state of affairs is due to the fact that the Lévy metric is sensitive to what happens at $+ \infty$ and $- \infty$, while weak convergence is not. The purpose of this paper is to show that a modification of the Lévy metric yields a metric for Δ for which convergence corresponds precisely to weak convergence.

For any F, G in Δ and $h > 0$, define the properties

(1) $A(F, G; h)$ iff $F(x - h) - h \leq G(x)$ for $- 1/h < x < 1/h + h$,

(2) $B(F, G; h)$ iff $F(x+h)+h \geq G(x)$ for $-h - 1/h < x < 1/h$, and let

Copyright © Rocky Mountain Mathematics Consortium

Received by the editors October 10, 1969.

AMS 1969 *subject classifications.* Primary 6020; Secondary 5435.

¹Some of these results were part of the author's Senior Honors Thesis written under the direction of Professor Berthold Schweizer at the University of Massachusetts.