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DIVISIBLE QUOTIENT GROUPS OF REDUCED 
ABELIAN GROUPS 

ELBERT A. WALKER 

The groups under discussion here are all Abelian, so group means 
Abelian group. A group G is divisible if nG = {ng | g G G} = G for 
all nonzero integers n. Typical examples are the additive group Q of 
rational numbers, and its homomorphic images. In fact, every divisible 
group is a direct sum of such groups. If D is a divisible subgroup of 
G, then D is a summand of G Every group G has a unique largest 
divisible subgroup D, and if G = D © H, then H has no nonzero 
divisible subgroups. Such an H is called reduced. Reduced groups 
G can have divisible quotient groups Gl A. In fact, free groups are 
reduced and certainly have divisible quotient groups. However, if 
G is reduced and Gl A is divisible, then A cannot be too small com
pared to G. For example, suppose G is a reduced p-group and B is 
a basic subgroup of G. That is, B is a subgroup of G such that GIB 
is divisible, B is a direct sum of cyclic groups, and B H nG = nß for 
all integers n. Then Fuchs shows [1, Theorem 30.1] that |B|A'° ^ |G|. 
Fuchs proves this using his [2] quasibases of such G. He then uses 
|B|X& ^ |G| to show that for reduced p-groups G, \GIGl\* ^ |G|, 
where G1 = l ì n=i wG is the subgroup of elements of infinite height 
in G. The facts are important in the theory of p-groups. (They are 
crucial in establishing necessary and sufficient conditions for a well-
ordered sequence of p-groups with no elements of infinite height to 
be the Ulm sequence of a reduced p-group. See [ 1, Chapter VI], for 
example.) Now these inequalities hold in general. That is, if G is any 
reduced group and Gl A is divisible, then |A|X& ^ |G|, and 
IG/G1)^ â; |G|. The group G does not have to be a p-group and A 
does not have to be a basic subgroup of G. The second inequality is 
actually a consequence of the first, as we shall see. The inequality 
|A|A& è |G| has a short homological proof as follows. The exact 
sequence 0-» Z - * Q—» QIZ-* 0 yields the exact sequence Hom(Ç), G) 
= 0-> Hom(Z, G)**G-+ Ext(Ç>/Z, G) so that Ext (Ç/Z, G) 
contains a copy of G The sequence 0 - ^ A-^ G-* G/A—» 0 yields 
the epimorphism Ext(Ç/Z, A) - • Ext(Ç/Z, G) -> 0; Ext(Ç/Z, G/A) = 0 
since every extension of a divisible group splits. Thinking of 
Ext(Q/Z, A) as the group of factor systems (which are some of the 
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