EMBEDDINGS OF SURFACES IN E³

C. E. BURGESS ¹AND J. W. CANNON²

Contents

		Page
1.	INTRODUCTION	260
2.	DEFINITIONS	26 3
	2.1. Euclidean spaces	264
	2.2. Manifolds-with-boundary	264
	2.3. Piecewise linear (PL) structures	265
	2.4. Tame sets, wild sets, 2-spheres, crumpled cubes, and collared sets .	266
	2.5. Decomposition spaces and cellular sets	267
З.	Examples of Wild Spheres	267
	3.1. The Alexander horned sphere	267
	3.2. The Antoine sphere	268
	3.3. The Fox-Artin sphere	270
	3.4. The Bing sphere	271
	3.5. Other wild spheres	272
	3.6. Disjoint spheres and disks in E ³	273
4.	BASIC THEOREMS	274
	4.1. Separation and accessibility	274
	4.2. Tietze extension theorem	275
	4.3. Spaces of functions	276
	4.4. Polyhedral spheres in E ³	277
	4.5. Dehn's lemma and related theorems	279
	4.6. Polyhedral approximations of spheres	281
	4.7. Linking	285
	4.8. Brief outline of plane topology	286
5.	General Properties of Spheres and Crumpled Cubes in E^3	290
	5.1. Tame arcs and other tame continua on spheres	290
	5.2. Piercing spheres with arcs	292
	5.3. Neighborhoods of spheres	295
	5.4. Small disks on surfaces in E^3 are on small spheres	296
	5.5. Improving intersections of spheres with lines and with other	
	spheres	297
	5.6. Equivalence of complements of crumpled cubes and arcs in E^3 .	297
	5.7. Pushing a 2-sphere into its complement	298
6.	CHARACTERIZATIONS OF TAME SPHERES	300
	6.1. Locally tame spheres	300
	6.2. Spheres which can be homeomorphically approximated in their	
	complementary domains	300
	6.3. Free 2-spheres in E ³	302

Received by the editors March 9, 1970.

AMS 1970 subject classifications. Primary 55A30, 55A35, 57A05, 57A10, 57A35, 57A40, 57Å45, 57A50.

¹Support from the National Science Foundation under GP-12025. ²National Science Foundation Postdoctoral Fellow.

Copyright © Rocky Mountain Mathematics Consortium