EIGENFUNCTION EXPANSIONS AND SCATTERING THEORY FOR PERTURBATIONS OF $-\Delta$

NORMAN SHENK AND DALE THOE

1. Survey of results. Let Ω be the unbounded domain exterior to a compact C^2 hypersurface Γ in \mathbb{R}^n $(n \ge 2)$ and q(x) a real-valued function such that $e^{2a|x|}q(x)$ is bounded and uniformly α -Hölder continuous in $\Omega \cup \Gamma$ for certain constants a > 0 and $0 < \alpha < 1$.

We let *H* denote the selfadjoint operator $-\Delta + q$ in $L^2(\Omega)$ acting on functions which are zero on Γ . Specifically, we define

(1.1)
$$D(H) = \{g : (\partial/\partial x)^{\alpha} g \in L^{2}(\Omega) \text{ for } |\alpha| \leq 2 \text{ and } g|_{\mathbf{r}} = 0\},\ Hg = -\Delta g + qg \text{ for } g \in D(H).$$

Here differentiation is interpreted in the space $\mathfrak{D}'(\Omega)$ of distributions on Ω and $g|_{\mathbf{r}}$ is interpreted in an L^2 sense (see §4).

We treat H as a perturbation of the selfadjoint operator $H_0 = -\Delta$ in $L^2(\mathbb{R}^n)$,

(1.2)
$$D(H_0) = \{f : (\partial/\partial x)^{\alpha} f \in L^2(\mathbb{R}^n) \text{ for } |\alpha| \leq 2\},\ H_0 f = -\Delta f \text{ for } f \in D(H_0).$$

The Fourier transform

(1.3)
$$\hat{f}(\xi) = \text{l.i.m.} (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} dx \quad (\xi \in \mathbb{R}^n)$$

is a unitary map

$$L^2(\mathbb{R}^n) \ni f \to \hat{f} \in L^2(\mathbb{R}^n)$$

which "diagonalizes" H_0 , i.e., which transforms H_0 into multiplication by $|\boldsymbol{\xi}|^2$,

(1.4)
$$(H_0 f)(\xi) = |\xi|^2 f(\xi).$$

The plane wave $e^{ix\cdot\xi}$ is an eigenfunction of the differential operator $-\Delta$,

 $-\Delta e^{ix\cdot\xi} = |\xi|^2 e^{ix\cdot\xi} ,$

Received by the editors November 20, 1969.

AMS 1970 subject classifications. Primary 47A40, 35P25, 31B35; Secondary 35J10, 35J05. Copyright © Rocky Mountain Mathematics Consortium