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ABSTRACT. Pontryagin’s theory for an optimal control
problem with dynamics described by an ODE has possible ex-
tensions to other systems, such as some PDEs. If the sys-
tem with state x and control u is described abstractly by
Dx = M(x, u), then some other linear mappings D than differ-
entiation can lead to a Pontryagin principle. Costate bound-
ary conditions are obtained by calculating an adjoint map-
ping. If the domain is not compact, but the problem reaches
a strict minimum, then under some continuity restrictions the
control problem can be approximated closely by one for which
Pontryagin’s principle holds.

1. Introduction. The optimal control problem:

MINx,u F (x, u) :=
∫ T

0

f(x(t), u(t), t)dt subject to

x(0) = x0, ẋ(t) = m(x(t), u(t), t) (0 ≤ t ≤ T ),
u(t) ∈ Γ(t) (0 ≤ t ≤ T ) ⇔ (∀t)g(x(t), t) ≤ 0

may be written as:

MINx,u F (x, u) subject to Dx = M(x, u),

where Dx = w ⇔ x = x0 +
∫ t

0 w(s)ds, M(x, u)(t) := m(x(t), u(t), t),
and D is made continuous by giving a suitable graph norm to the
space X of states. This formulation suggests a generalization in which
the domain [0, T ] is replaced by a closed subset E ⊂ Rr (r ≥ 1),
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