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ABSTRACT. We prove analytically a connection between
the generalized Molchan-Golosov integral transform, see [4,
Theorem 5.1], and the generalized Mandelbrot-Van Ness inte-
gral transform, see [8, Theorem 1.1], of fractional Brownian
motion (fBm). The former changes fBm of arbitrary Hurst in-
dex K into fBm of index H by integrating over [0, t], whereas
the latter requires integration over (—oo,t] for ¢ > 0. This
completes an argument in [4], where the connection is men-
tioned without full proof.

1. Introduction. The fractional Brownian motion with Hurst index
H € (0,1), or H-fBm, is the continuous, centered Gaussian process
(BH)ier with BEf = 0, almost surely, and

Covp (BY,Bff) = = (|s|*" + [t|*" — |t — s|*"), s,te€R.

N =

H-fBm is H-self-similar and has stationary increments. For H = 1/2,
fractional Brownian motion is standard Brownian motion and denoted
by W. FBm is interesting from a theoretical point of view, since it
is fairly simple, but neither a Markov process, nor a semi-martingale.
Recently, the process has been studied extensively in connection to
various applications, for example in finance and telecommunications.
Important tools when working with fBm are its integral representations:
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