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INVERSE SCATTERING FOR SCATTERING DATA 
WITH POOR REGULARITY OR SLOW DECAY 

TH. RAPPELER 

1. Introduction. Motivation to study the inverse scattering 
problem for scattering data with poor regularity or slow decay is 
an application which will be given in two subsequent papers [7, 21] 
for the Cauchy problem of the Korteweg-deVries equation (KdV) 
ut — 6uux + uxxx = 0 with irregular initial profile as, e.g., a smooth 
enough box shaped potential or a steplike a smoothed Heavyside 
function [4,5]. 

If we consider u(x) as a potential for the Schrodinger equation 
—y"(x) -f u(x)y(x) — k2y(x) we can associate to u, by a well known 
procedure [8,9], the scattering data of which a part is given by the so 
called scattering matrix (T+, i?+, T_, fi_). To find a solution u(x, t) of 
the KdV (t > 0) it is enough to study the evolution of the scattering 
in time and to construct u(x, t) by the inverse problem [3, 4, 5, 7, 
10, 11, 12, 13]. Often, however, the evolution of the scattering data, 
especially R-, does not stay within the set where the inverse problem 
was known to be solvable [4, 5]. 

Let us briefly outline the organization of the paper. In §2 we 
discuss the Marchenko equation in ^ ( i ? - ) . In §3 we study the inverse 
scattering problem under weaker decay and regularity properties of R-
and its Fourier transform than in [8, 9]. 

Let us introduce the following notation. Let / be a complex valued 
function defined on R. By rxf we denote the translated function 
Txf(y) := f(x + y) {x and y in R). If h ^ 0 we denote by Ahf 
the differential quotient (Ahf)(x) := (/(*+^-/(*)). 

Let / be in L2ÇR,). By / we denote the Fourier transform f(k) := 
f^oo f{x)e2lkxdx. By rxf we define the operator on L 2 ( R - ) defined by 

rxf{g){y) := / rzf(x + z)g(z)dz (g in L2(R_)). 

By ; or dx we denote the derivation with respect to x. For a complex 
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