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ABSTRACT. Let (R,m) be an analytically unramified local
ring of dimension d ≥ 1, and let I, J be m-primary ideals. Let

e(i,j)(I, J) be the coefficient of (−1)d−(i+j)
(
x+i−1

i

)(
y+j−1

j

)
of the normal Hilbert polynomial of I and J . In this paper
we prove that e(i,j)(I, J) are nonnegative for i+ j ≥ d− 3 in
Cohen-Macaulay local rings. We also prove that, if i + j =
d−1, then e(i,j)(I, J) are nonnegative in unmixed local rings.

1. Introduction. Let R be a commutative ring and I an ideal of
R. We say that x ∈ R is integral over I if x satisfies

xn + a1x
n−1 + · · ·+ an = 0

for some ai ∈ Ii, i = 1, 2, . . . , n. The set I of elements that are integral
over I is an ideal, called the integral closure of I. A Noetherian local
ring (R,m) is called analytically unramified if its m-adic completion
is reduced. For an m-primary ideal I in an analytically unramified
local ring R of dimension d, there exist uniquely determined integers
e0(I), . . . , ed(I) such that, for large n,

λ(R/In+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I),

where λ denotes length [10, Theorem 1.4] and [11, Theorem 1.1].
Bhattacharya [1, Theorem 8] showed that, for m-primary ideals I and
J in a Noetherian local ring (R,m) of dimension d, there exist integers
e(i,j)(I, J) such that, for large r, s,

λ(R/IrJs) =
∑

i+j≤d

(−1)d−(i+j)e(i,j)(I, J)

(
r + i− 1

i

)(
s+ j − 1

j

)
.
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