PROJECTIVE STAR OPERATIONS ON POLYNOMIAL RINGS OVER A FIELD

ALICE FABBRI AND OLIVIER A. HEUBO-KWEGNA

Abstract

We consider the polynomial ring $S:=K\left[X_{0}\right.$, $\left.\ldots, X_{n}\right]$ over a field K and the rings $R_{i}:=K\left[\left(X_{0} / X_{i}\right), \ldots\right.$, $\left(X_{n} / X_{i}\right)$] for $0 \leq i \leq n$. We introduce the notion of a projective star operation on S and relate it to the classical star operations on the R_{i} 's. We show that the projective Kronecker function ring $\operatorname{PKr}(S, \star)$ of S is the intersection of the Kronecker function rings $\operatorname{Kr}\left(R_{i}, \star_{i}\right), 0 \leq i \leq n$, where the \star_{i} 's are pairwise compatible e.a.b. star operations on the R_{i} 's and \star is a projective star operation on S built from the \star_{i} 's.

1. Introduction. Let R be an integral domain with quotient field F. Let $\mathfrak{F}(R)$ denote the set of nonzero fractional ideals of R. We recall that a star operation on R is defined as a mapping $\star: \mathfrak{F}(R) \rightarrow \mathfrak{F}(R)$, $I \mapsto I^{\star}$, such that for all $I, J \in \mathfrak{F}(R)$ and $x \in F \backslash\{0\}$:
$\left(\star_{1}\right) R^{\star}=R$ and $(x I)^{\star}=x I^{\star}$;
$\left(\star_{2}\right) I \subseteq I^{\star}$, and $I \subseteq J \Rightarrow I^{\star} \subseteq J^{\star}$;
$\left(\star_{3}\right) I^{\star \star}:=\left(I^{\star}\right)^{\star}=I^{\star}$.
A star operation \star is called endlich arithmetisch brauchbar (in brief e.a.b.) if for any finitely generated $I, J, H \in \mathfrak{F}(R),(I J)^{\star} \subseteq(I H)^{\star}$ implies $J^{\star} \subseteq H^{\star}$. Given an e.a.b. star operation \star, the $\operatorname{ring} \operatorname{Kr}(R, \star):=$ $\left\{f / g: f, g \in R[X] \backslash\{0\}, C(f)^{\star} \subseteq C(g)^{\star}\right\} \cup\{0\}$, where $C(f)$ denotes the content of the polynomial $f(X)$, is called the Kronecker function of R with respect to \star. It is known that $\operatorname{Kr}(R, \star)$ is a Bézout domain (a domain for which every proper nonzero finitely generated ideal is principal) with quotient field $F(X)$ and such that $\operatorname{Kr}(R, \star) \cap F=R$ (for an overview on star operations and Kronecker function rings see [7, Section 32]).
[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 13A15, 13A18, 16W50.
 Keywords and phrases. Star operations, Kronecker function rings, graded rings.
 The results in this article formed a part of the authors' theses.
 Received by the editors on November 4, 2010, and in revised form on September 7, 2011.

