SEMILOCAL FORMAL FIBERS OF PRINCIPAL PRIME IDEALS

JOHN CHATLOS, BRIAN SIMANEK
NATHANIEL G. WATSON AND SHERRY X. WU

Abstract

Let (T, \mathfrak{m}) be a complete local (Noetherian) ring, C a finite set of pairwise incomparable nonmaximal prime ideals of T, and $p \in T$ a nonzero element. We provide necessary and sufficient conditions for T to be the completion of an integral domain A containing the prime ideal $p A$ whose formal fiber is semilocal with maximal ideals the elements of C.

1. Introduction. One way to better understand the relationship between a commutative local ring and its completion is to examine the formal fibers of the ring. Given a local ring A with maximal ideal m and \mathfrak{m}-adic completion \widehat{A}, the formal fiber of a prime ideal $P \in \operatorname{Spec} A$ is defined to be Spec $\left(\widehat{A} \otimes_{A} k(P)\right)$, where $k(P):=A_{P} / P A_{P}$. Since there is a one-to-one correspondence between the elements in the formal fiber of P and the prime ideals in the inverse image of P under the map from Spec \widehat{A} to $\operatorname{Spec} A$ given by $Q \rightarrow Q \cap A$, we can think of $Q \in \operatorname{Spec} \widehat{A}$ as being in the formal fiber of P if and only if $Q \cap A=P$.

One fruitful way of researching formal fibers has been, instead of directly computing the formal fibers of rings, to investigate "inverse" formal fiber questions-that is, given a complete local ring T, when does there exist a local ring A such that $\widehat{A}=T$ and both A and the formal fibers of prime ideals in A meet certain prespecified conditions? One important result of this type is due to Charters and Loepp, who show in [1] that, given a complete local ring T with maximal ideal \mathfrak{m} and $G \subset \operatorname{Spec} T$ where G is a finite set of prime ideals which are pairwise incomparable by inclusion, a local domain A exists such that $\widehat{A}=T$ and the formal fiber of the zero ideal of A is semilocal with maximal

[^0]
[^0]: This research was supported by National Science Foundation grant DMS0353634.

 Received by the editors on November 21, 2009, and in revised form on June 23, 2011.

