SEMILOCAL FORMAL FIBERS OF PRINCIPAL PRIME IDEALS

JOHN CHATLOS, BRIAN SIMANEK NATHANIEL G. WATSON AND SHERRY X. WU

ABSTRACT. Let (T, \mathfrak{m}) be a complete local (Noetherian) ring, C a finite set of pairwise incomparable nonmaximal prime ideals of T, and $p \in T$ a nonzero element. We provide necessary and sufficient conditions for T to be the completion of an integral domain A containing the prime ideal pA whose formal fiber is semilocal with maximal ideals the elements of C.

1. Introduction. One way to better understand the relationship between a commutative local ring and its completion is to examine the formal fibers of the ring. Given a local ring A with maximal ideal \mathfrak{m} and \mathfrak{m} -adic completion \widehat{A} , the formal fiber of a prime ideal $P \in \operatorname{Spec} A$ is defined to be $\operatorname{Spec}(\widehat{A} \otimes_A k(P))$, where $k(P) := A_P/PA_P$. Since there is a one-to-one correspondence between the elements in the formal fiber of P and the prime ideals in the inverse image of P under the map from $\operatorname{Spec} \widehat{A}$ to $\operatorname{Spec} A$ given by $Q \to Q \cap A$, we can think of $Q \in \operatorname{Spec} \widehat{A}$ as being in the formal fiber of P if and only if $Q \cap A = P$.

One fruitful way of researching formal fibers has been, instead of directly computing the formal fibers of rings, to investigate "inverse" formal fiber questions—that is, given a complete local ring T, when does there exist a local ring A such that $\hat{A} = T$ and both A and the formal fibers of prime ideals in A meet certain prespecified conditions? One important result of this type is due to Charters and Loepp, who show in [1] that, given a complete local ring T with maximal ideal \mathfrak{m} and $G \subset \operatorname{Spec} T$ where G is a finite set of prime ideals which are pairwise incomparable by inclusion, a local domain A exists such that $\hat{A} = T$ and the formal fiber of the zero ideal of A is semilocal with maximal

This research was supported by National Science Foundation grant DMS-0353634.

Received by the editors on November 21, 2009, and in revised form on June 23, 2011.

DOI:10.1216/JCA-2012-4-3-369 Copyright ©2012 Rocky Mountain Mathematics Consortium