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ABSTRACT. Let (T,m) be a complete local (Noetherian)
ring, C a finite set of pairwise incomparable nonmaximal
prime ideals of T , and p ∈ T a nonzero element. We provide
necessary and sufficient conditions for T to be the completion
of an integral domain A containing the prime ideal pA whose
formal fiber is semilocal with maximal ideals the elements
of C.

1. Introduction. One way to better understand the relationship
between a commutative local ring and its completion is to examine the
formal fibers of the ring. Given a local ring A with maximal ideal m
and m-adic completion ̂A, the formal fiber of a prime ideal P ∈ SpecA
is defined to be Spec ( ̂A⊗Ak(P )), where k(P ) := AP /PAP . Since there
is a one-to-one correspondence between the elements in the formal fiber
of P and the prime ideals in the inverse image of P under the map from
Spec ̂A to SpecA given by Q → Q ∩ A, we can think of Q ∈ Spec ̂A as
being in the formal fiber of P if and only if Q ∩ A = P .

One fruitful way of researching formal fibers has been, instead of
directly computing the formal fibers of rings, to investigate “inverse”
formal fiber questions that is, given a complete local ring T , when does
there exist a local ring A such that ̂A = T and both A and the formal
fibers of prime ideals in A meet certain prespecified conditions? One
important result of this type is due to Charters and Loepp, who show
in [1] that, given a complete local ring T with maximal ideal m and
G ⊂ Spec T where G is a finite set of prime ideals which are pairwise
incomparable by inclusion, a local domain A exists such that ̂A = T
and the formal fiber of the zero ideal of A is semilocal with maximal
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