GENERALIZING SPERNER'S LEMMA TO A FREE MODULE OVER A SPECIAL PRINCIPAL IDEAL RING

GRADY D. BULLINGTON

ABSTRACT. Sperner's lemma states that if \mathcal{A} is an antichain from the power set of an n-element set, then $|\mathcal{A}| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$. Rota and Harper provide the following q-analogue to a number of classical generalizations of Sperner's lemma: if \mathcal{A} is an l-chain-free family of subspaces of a finite vector space \mathbf{F}_q^n , then $\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{m}} \leq l$ and $|\mathcal{A}|$ is bounded by the sum of the l-largest Gaussian coefficients $\binom{n}{l}$. In this work, the

of the l largest Gaussian coefficients $\binom{n}{k}_q$. In this work, the original Sperner's lemma as well as Rota and Harper's result are extended to multiple generalizations in the setting of a finitely-generated free module over a finite special principal ideal ring.

1. Introduction. As given in [10, 11], Sperner's lemma (regarding finite sets) states that the cardinality of any anti-chain (i.e., collection of incomparable subsets) from the power set $\mathcal{P}([n])$ of an n-element set [n] does not exceed the combination $\binom{n}{\lfloor \frac{n}{2} \rfloor}$. Some well-known n-set generalizations of Sperner's lemma are stated in the next theorem. (As in [1], we use the convention that an l-chain free family is a collection of subsets that contain no chain, $U_0 \subseteq U_1 \subseteq \cdots \subseteq U_l$, of length l.)

Theorem 1.1 ([2, 6–8, 12]). Let \mathcal{A} be an l-chain-free family of subsets from $\mathcal{P}([n])$. Then: (a) $\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \leq l$.

- (b) $|\mathcal{A}|$ is bounded by the sum of the l largest values $\binom{n}{k}$, $0 \le k \le n$.
- (c) Letting S_k denote the set of all k-element subsets in $\mathcal{P}([n])$, there is equality in (a) and (b) when A consists of the l largest sets S_k , $0 \le k \le n$.

²⁰¹⁰ AMS Mathematics subject classification. Primary 13A99, Secondary 05E40.

Keywords and phrases. Sperner's lemma, q-analogue, Gaussian coefficients, SPIR.

Received by the editors on February 10, 2009, and in revised form on June 17, 2009.