MONOIDS OF MODULES OVER RINGS OF INFINITE COHEN-MACAULAY TYPE

NICHOLAS R. BAETH AND SILVIA SACCON

Abstract

Given a one-dimensional analytically unramified local ring (R, \mathfrak{m}), let $\mathfrak{C}(R)$ denote the monoid of isomorphism classes of maximal Cohen-Macaulay R-modules (together with $[0])$ with operation given by $[M]+[N]=[M \oplus N]$. If R is complete, then the Krull-Remak-Schmidt property holds; i.e., direct-sum decompositions of finitely generated R modules are unique. If R is not complete, then properties of the monoid $\mathfrak{C}(R)$ measure how far R is from having the Krull-Remak-Schmidt property. Using a list of ranks of indecomposable maximal Cohen-Macaulay modules over the \mathfrak{m}-adic completion of R, we give a description of the monoid $\mathfrak{C}(R)$ when R has infinite Cohen-Macaulay type. Under certain hypotheses we show that, for arbitrary integers s and t both greater than one, there exists a maximal Cohen-Macaulay R module M such that $M \cong L_{1} \oplus \cdots \oplus L_{s}$ and $M \cong N_{1} \oplus \cdots \oplus N_{t}$ for indecomposable maximal Cohen-Macaulay R-modules L_{i} and N_{j}.

1. Introduction. Let R be a commutative ring, and let \mathcal{C} be a class of R-modules closed under isomorphism, finite direct sums and direct summands. We say the Krull-Remak-Schmidt property holds for the class \mathcal{C} if, whenever $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{s} \cong N_{1} \oplus N_{2} \oplus \cdots \oplus N_{t}$ for indecomposable modules $M_{i}, N_{j} \in \mathcal{C}$, then
(1) $t=s$, and
(2) there exists a permutation σ of the set $\{1, \ldots, s\}$ such that $M_{i} \cong N_{\sigma(i)}$ for each $i \in\{1, \ldots, s\}$.
Over a complete local ring, the Krull-Remak-Schmidt property holds for the class of finitely generated modules (see [16, Theorem 5.20]). Many authors, including Evans [6, Section 1] and Wiegand [18, Sections 3 and 4], have produced examples of noncomplete local rings for which direct-sum decompositions of finitely generated modules are
[^0]
[^0]: Parts of this work appear in the second author's Ph.D. thesis at the University of Nebraska-Lincoln, under the supervision of Roger Wiegand.

 Received by the editors on March 1, 2010, and in revised form on June 8, 2010.

