STABILITY OF QUASI-SOCLE IDEALS

JUN HORIUCHI

Abstract

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $\operatorname{dim} A>0$. Let $\mathrm{G}(\mathfrak{m})=\oplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ be the associated graded ring of \mathfrak{m}. This paper explores quasisocle ideals in A, i.e., ideals of the form $I=Q: \mathfrak{m}^{q}(q \geq 1)$ where Q is a parameter ideal. Goto, Sakurai, and the author have shown that the methods developed by Wang also work in the non Cohen-Macaulay case with some modification. The purpose of this paper is to solve a problem that has remained open. We will show that, if A is a generalized Cohen-Macaulay ring with depth $\mathrm{G}(\mathfrak{m}) \geq 2$, then for each integer $q \geq 1$ one can find an integer $t=t(q) \gg 0$, depending upon q, such that $I^{2}=Q I$ for every parameter ideal Q contained in \mathfrak{m}^{t}, where $I=Q: \mathfrak{m}^{q}$. Therefore, the associated graded ring $\mathrm{G}(I)=\oplus_{n \geq 0} I^{n} / I^{n+1}$ of I is a Buchsbaum ring whenever A is Buchsbaum.

1. Introduction. Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. This paper studies quasi-socle ideals, i.e., ideals of the form $I=Q: \mathfrak{m}^{q}(q \geq 1)$ where Q is a parameter ideal in A. We are interested in determining when $I^{2}=Q I$, in which case we call I stable. To state the results, we need to first fix some notation and terminology.
For each \mathfrak{m}-primary ideal I in A, we denote by $\left\{\mathrm{e}_{I}^{i}(A)\right\}_{0 \leq i \leq d}$ the Hilbert coefficients of A with respect to I. The Hilbert function of I is then given by the formula

$$
\ell_{A}\left(A / I^{n+1}\right)=\mathrm{e}_{I}^{0}(A)\binom{n+d}{d}-\mathrm{e}_{I}^{1}(A)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \mathrm{e}_{I}^{d}(A)
$$

for all $n \gg 0$, where $\ell_{A}(M)$ denotes the length of the A-module M.
Let Q be a parameter ideal in A. We set $\mathbf{I}(Q)=\ell_{A}(A / Q)-e_{Q}^{0}(A)$. Then A is a Cohen-Macaulay ring if and only if $\mathbf{I}(Q)=0$ for some (and

[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 13H10, Secondary 13H15.

 Keywords and phrases. Quasi-socle ideal, Cohen-Macaulay ring, Buchsbaum ring, associated graded ring, local cohomology, multiplicity.

 Received by the editors on October 16, 2010, and in revised form on June 28, 2011.

