SEPARATORS OF ARITHMETICALLY COHEN-MACAULAY FAT POINTS IN $\mathbf{P}^1 \times \mathbf{P}^1$

ELENA GUARDO AND ADAM VAN TUYL

ABSTRACT. Let $Z \subseteq \mathbf{P}^1 \times \mathbf{P}^1$ be a set of fat points that is also arithmetically Cohen-Macaulay (ACM). We describe how to compute the degree of a separator of a fat point of multiplicity m for each point in the support of Z using only a numerical description of Z. Our formula extends the case of reduced points which was previously known.

1. Introduction. Fix an algebraically closed field k of characteristic zero. Let $R = k[x_0, x_1, y_0, y_1]$ be the \mathbb{N}^2 -graded polynomial ring with deg $x_i = (1,0)$ for i = 0,1 and deg $y_i = (0,1)$ for i = 0,1. The ring R is the coordinate ring of $\mathbb{P}^1 \times \mathbb{P}^1$. Consider now a set of points $X = \{P_1, \ldots, P_s\} \subset \mathbb{P}^1 \times \mathbb{P}^1$, and fix positive integers m_1, \ldots, m_s . The goal of this note is to study some of the properties of the scheme $Z = m_1 P_1 + \cdots + m_s P_s$ of fat points (precise definitions are deferred until the next section). In particular, we are interested in describing the separator of P_i of multiplicity m_i .

Recall that for sets of points $X = \{P_1, \ldots, P_s\} \subseteq \mathbf{P}^n$, a homogeneous form $F \in k[\mathbf{P}^n]$ is called a separator of $P \in X$ if $F(P) \neq 0$, but F(Q) = 0 for all $Q \in X \setminus \{P\}$. Over the years, a number of authors have shown how to exploit information about the separator of a point to describe properties of the set of reduced points $X \subseteq \mathbf{P}^n$ (e.g., see [1-4, 11, 13, 14]). In a series of papers, the authors, along with Marino, (see [6, 10]) generalized some of these results by studying separators of fat points, a family of non-reduced points. Roughly speaking, a separator of a point P_i of multiplicity m_i and the degree of a point P_i of multiplicity m_i are defined in terms of the generators of $I_{Z'}/I_Z$ in R/I_Z where $I_{Z'}$ is the defining ideal of $Z' = m_1 P_1 + \cdots + (m_i - 1) P_i + \cdots + m_s P_s$.

²⁰¹⁰ AMS Mathematics subject classification. Primary 13D40, 13D02, 14M05. Keywords and phrases. Separators, fat points, Cohen-Macaulay, Hilbert function. The second author acknowledges the support of NSERC. Received by the editors on May 28, 2010, and in revised form on June 28, 2011.