SEPARATORS OF ARITHMETICALLY COHEN-MACAULAY FAT POINTS IN $\mathbf{P}^{1} \times \mathbf{P}^{1}$

ELENA GUARDO AND ADAM VAN TUYL

Abstract

Let $Z \subseteq \mathbf{P}^{1} \times \mathbf{P}^{1}$ be a set of fat points that is also arithmetically Cohen-Macaulay (ACM). We describe how to compute the degree of a separator of a fat point of multiplicity m for each point in the support of Z using only a numerical description of Z. Our formula extends the case of reduced points which was previously known.

1. Introduction. Fix an algebraically closed field k of characteristic zero. Let $R=k\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$ be the \mathbf{N}^{2}-graded polynomial ring with $\operatorname{deg} x_{i}=(1,0)$ for $i=0,1$ and $\operatorname{deg} y_{i}=(0,1)$ for $i=0,1$. The ring R is the coordinate ring of $\mathbf{P}^{1} \times \mathbf{P}^{1}$. Consider now a set of points $X=\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathbf{P}^{1} \times \mathbf{P}^{1}$, and fix positive integers m_{1}, \ldots, m_{s}. The goal of this note is to study some of the properties of the scheme $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ of fat points (precise definitions are deferred until the next section). In particular, we are interested in describing the separator of P_{i} of multiplicity m_{i}.

Recall that for sets of points $X=\left\{P_{1}, \ldots, P_{s}\right\} \subseteq \mathbf{P}^{n}$, a homogeneous form $F \in k\left[\mathbf{P}^{n}\right]$ is called a separator of $P \in X$ if $F(P) \neq 0$, but $F(Q)=0$ for all $Q \in X \backslash\{P\}$. Over the years, a number of authors have shown how to exploit information about the separator of a point to describe properties of the set of reduced points $X \subseteq \mathbf{P}^{n}$ (e.g., see $[\mathbf{1}-\mathbf{4}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 4}]$). In a series of papers, the authors, along with Marino, (see [6, 10]) generalized some of these results by studying separators of fat points, a family of non-reduced points. Roughly speaking, a separator of a point P_{i} of multiplicity m_{i} and the degree of a point P_{i} of multiplicity m_{i} are defined in terms of the generators of $I_{Z^{\prime}} / I_{Z}$ in R / I_{Z} where $I_{Z^{\prime}}$ is the defining ideal of $Z^{\prime}=m_{1} P_{1}+\cdots+\left(m_{i}-1\right) P_{i}+\cdots+m_{s} P_{s}$.

[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 13D40, 13D02, 14M05.
 Keywords and phrases. Separators, fat points, Cohen-Macaulay, Hilbert function. The second author acknowledges the support of NSERC.
 Received by the editors on May 28, 2010, and in revised form on June 28, 2011.

