COMULTIPLICATION MODULES OVER COMMUTATIVE RINGS II

YOUSEF AL-SHANIAFI AND PATRICK F. SMITH

Abstract

Let R be a commutative ring with identity. A unital R-module M is a comultiplication module provided that, for each submodule N of M, there exists an ideal A of R such that N is the set of elements m in M such that $A m=0$. It is proved that every comultiplication module with zero radical is semisimple. Moreover, for any comultiplication module M, every submodule has a unique complement and a unique closure in M. Every Noetherian comultiplication module is an Artinian quasi-injective module. In case R is a semilocal ring containing precisely n distinct maximal ideals, for some positive integer n, every comultiplication R-module has Goldie dimension at most n. On the other hand, if R is a ring with finite Goldie dimension n, for some positive integer n, then it is proved that certain faithful comultiplication R-modules have hollow dimension at most n.

1. Introduction. This paper is a continuation of [1]. Throughout R is a ring with identity and M is a unitary right R-module. Moreover, unless stated otherwise, R will always denote a commutative ring. Given submodules N and L of M, we denote by $\left(N:_{R} L\right)$ the set of elements r in R such that $r L \subseteq N$. Note that $\left(N:_{R} L\right)$ is the annihilator in R of the R-module $(L+N) / N$ and is an ideal of R. In particular, if N is a submodule of M and $m \in M$, then $\left(N:_{R} R m\right)$ will be denoted simply by $\left(N:_{R} m\right)$, so that $\left(N:_{R} m\right)=\{r \in R: r m \in N\}$. On the other hand, if N is again a submodule of M and A is an ideal of R, then $\left(N:_{M} A\right)$ is the set of elements m in M such that $A m \subseteq N$, and it is clear that $\left(N:_{M} A\right)$ is a submodule of M. Recall that M is a comultiplication module if, for each submodule N of M, there exists an ideal A of R such that $N=\left(0:_{M} A\right)$. The first result is taken from [2, Theorem 3.17 (d)].
Lemma 1.1. Every submodule of a comultiplication module is also a comultiplication module.

Proof. Clear.

[^0]
[^0]: Received by the editors on February 17, 2011.

