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TRIVARIATE MONOMIAL COMPLETE INTERSECTIONS
AND PLANE PARTITIONS

CHARLES P. CHEN, ALAN GUO, XIN JIN AND GAKU LIU

ABSTRACT. We consider the homogeneous components U,
of the map on R = k[z, y, 2]/(z4,y?, 2°) that multiplies by
z +y + z. We prove a relationship between the Smith normal
forms of submatrices of an arbitrary Toeplitz matrix using
Schur polynomials and use this to give a relationship between
Smith normal form entries of U,. We also give a bijective
proof of an identity proven by Li and Zanello equating the
determinant of the middle homogeneous component U, when
(A, B,C) = (a+b, a+c, b+c) to the number of plane partitions
in an a X b X ¢ box. Finally, we prove that, for certain vector
subspaces of R, similar identities hold relating determinants
to symmetry classes of plane partitions, in particular classes
3, 6 and 8.

1. Introduction. For a commutative ring k and positive integers
A, B,C, consider the trivariate monomial complete intersection R =
k[z,y, z]/(x?,y?,2¢). This carries a standard grading in which z,y, z
each have degree one and decomposes as a direct sum R = @, _, R,
where e := A+B+C—3, and each homogeneous component R, = k"("),
where h(r) denotes the size of the set B, consisting of all monomials of
total degree r in x,y, z which are nonzero in R. It is easily seen that
(h(0),R(1),...,h(e)) is a symmetric unimodal sequence. Furthermore,
it is known that the maps

U.:R, (z+y+=2)

Rr+1

have U!_, = U,, and that U, is injective for 0 < r < |[(e — 1)/2] when
working with k = Z or Q (or, in fact, with any field of characteristic
zero).
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