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ON IDEAL EXTENSIONS OF IDEAL COMPLEMENTS
W. EDWIN CLARK, TOM MCKINLEY AND BORIS SHEKHTMAN

ABSTRACT. In this note we give negative answers to a
conjecture of Tomas Sauer. Specifically we prove that there
exists an ideal K C Cjz,y] that complements the space of
polynomials of degree 3 such that no ideal containing K
complements the space of polynomials of degree 2. We also
give a characterization of zero-dimensional radical ideals in
terms of extensions of ideal complements.

1. Introduction. Let C[x] := Cl[z1,... , 4] stand for the algebra of
polynomials in d variables with complex coefficients and C< n [x] denote
the linear subspace of C[x] of polynomials of degree at most N. For
an ideal J C C[x] we use V(J) to denote the affine variety associated
with this ideal.

The extensions of ideals complements is the object of investigations
related to the multivariate Lagrange and Hermite interpolation (cf.
[3-5]). Paraphrased, a result of Sauer and Xu [5] shows that every
radical ideal that complements C<y[x| in C[x] can be extended to a
(zero-dimensional, radical) ideal that complements C<y_1[x]. In other
words, if K C CJx] is a radical ideal such that

(1) Clx] = Cenlx] & K,
then there exists a radical ideal J O K such that

(1.2) Cix|=Ccyalx|®J

Based on this result as well as some further evidence (cf. [4]), Sauer [3]

made the following conjecture:

Conjecture 1.1. If K is an arbitrary ideal in C[x] satisfying (1.1),
then there exists an ideal J D K satisfying (1.2).
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