ON IDEAL EXTENSIONS OF IDEAL COMPLEMENTS

W. EDWIN CLARK, TOM MCKINLEY AND BORIS SHEKHTMAN

ABSTRACT. In this note we give negative answers to a conjecture of Tomas Sauer. Specifically we prove that there exists an ideal $K \subset \mathbf{C}[x,y]$ that complements the space of polynomials of degree 3 such that no ideal containing K complements the space of polynomials of degree 2. We also give a characterization of zero-dimensional radical ideals in terms of extensions of ideal complements.

1. Introduction. Let $\mathbf{C}[\mathbf{x}] := \mathbf{C}[x_1, \dots, x_d]$ stand for the algebra of polynomials in d variables with complex coefficients and $\mathbf{C}_{\leq N}[\mathbf{x}]$ denote the linear subspace of $\mathbf{C}[\mathbf{x}]$ of polynomials of degree at most N. For an ideal $J \subset \mathbf{C}[\mathbf{x}]$ we use $\mathcal{V}(J)$ to denote the affine variety associated with this ideal.

The extensions of ideals complements is the object of investigations related to the multivariate Lagrange and Hermite interpolation (cf. [3-5]). Paraphrased, a result of Sauer and Xu [5] shows that every radical ideal that complements $\mathbf{C}_{\leq N}[\mathbf{x}]$ in $\mathbf{C}[\mathbf{x}]$ can be extended to a (zero-dimensional, radical) ideal that complements $\mathbf{C}_{\leq N-1}[\mathbf{x}]$. In other words, if $K \subset \mathbf{C}[\mathbf{x}]$ is a radical ideal such that

$$\mathbf{C}[\mathbf{x}] = \mathbf{C}_{\leq N}[\mathbf{x}] \oplus K,$$

then there exists a radical ideal $J \supset K$ such that

$$\mathbf{C}[\mathbf{x}] = \mathbf{C}_{\leq N-1}[\mathbf{x}] \oplus J.$$

Based on this result as well as some further evidence (cf. [4]), Sauer [3] made the following conjecture:

Conjecture 1.1. If K is an arbitrary ideal in $C[\mathbf{x}]$ satisfying (1.1), then there exists an ideal $J \supset K$ satisfying (1.2).

 $[\]overline{2010~\mathrm{AMS}~\mathit{Mathematics~subject~\mathit{classification}}.$ Primary 13A15, 13E10, 41A05, 41A63.

Keywords and phrases. Ideal complement, radical ideal, zero-dimensional ideal. Received by the editors on June 17, 2010, and in revised form on September 4, 2010

 $^{{\}rm DOI:} 10.1216/{\rm JCA-}2011-3-3-295 \quad Copyright © 2011 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Mountain \$